Initial commit
Browse files- README.md +37 -0
- a2c-PandaPickAndPlace-v3.zip +3 -0
- a2c-PandaPickAndPlace-v3/_stable_baselines3_version +1 -0
- a2c-PandaPickAndPlace-v3/data +97 -0
- a2c-PandaPickAndPlace-v3/policy.optimizer.pth +3 -0
- a2c-PandaPickAndPlace-v3/policy.pth +3 -0
- a2c-PandaPickAndPlace-v3/pytorch_variables.pth +3 -0
- a2c-PandaPickAndPlace-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaPickAndPlace-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaPickAndPlace-v3
|
16 |
+
type: PandaPickAndPlace-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -50.00 +/- 0.00
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaPickAndPlace-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaPickAndPlace-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac28e0b9da3115c15378cfc7f562d70815b409fc86e92a5240a633d0869c6d12
|
3 |
+
size 124391
|
a2c-PandaPickAndPlace-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
a2c-PandaPickAndPlace-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c35a3629630>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7c35a36230c0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1700149888883518760,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAYtMjvxAC1z6Xsw8+lmqWvXBqgT9Csw8+x7d0v72Nm75PsQ8+oj2OP/8/bb8NtA8+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA75DYv9HWNT5/xbw+me22P63Sqz+y228/LoOHPpIO1z/NE7Y/bf7FvhWsz77zAAk/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADtL8I95tXxP8K4QL8zOK6+4JGyvIGZFr/+Q28/YtMjvxAC1z6Xsw8+AHHiO2Cl6bzLdhDATCj9O2Cviry0+YM9HfLXO57h57y5xLE6lhPbPt/ysD9u2Ue/vPNnvVAhFT9Pfww/nExvP5Zqlr1waoE/QrMPPhVo4zuvhOm8ovlrPk3TATzW4oy8AlWEPbIWBzxgedy8OxXJOkJ6Dz5lBq4/HAU9vwVX+b5vU9S+Ul6vvwdJbz/Ht3S/vY2bvk+xDz6ZvOA7iTzovDdaMbtIM/w7sbmLvLT5gz0c8tc7nuHnvLn4oTpdiU8+4q7cvpBIn77JbLY/faOtvs3wBz4InpO/oj2OP/8/bb8NtA8+zS3hOx/G6bziLy27Cq/7Oz/mirxYAIQ9F/zXO0I16Lx7nKg6lGgOSwRLE4aUaBJ0lFKUdS4=",
|
33 |
+
"achieved_goal": "[[-0.6399442 0.4199376 0.14033352]\n [-0.07344548 1.0110607 0.14033225]\n [-0.9559292 -0.30381575 0.14032482]\n [ 1.1112559 -0.92675775 0.14033528]]",
|
34 |
+
"desired_goal": "[[-1.691923 0.17757727 0.36869428]\n [ 1.4291259 1.3423668 0.93694603]\n [ 0.2646727 1.6801322 1.4224793 ]\n [-0.38670674 -0.40560976 0.53517073]]",
|
35 |
+
"observation": "[[ 9.4817974e-02 1.8893402e+00 -7.5281918e-01 -3.4027252e-01\n -2.1798074e-02 -5.8827978e-01 9.3463123e-01 -6.3994420e-01\n 4.1993761e-01 1.4033352e-01 6.9104433e-03 -2.8521240e-02\n -2.2572505e+00 7.7257510e-03 -1.6929328e-02 6.4441115e-02\n 6.5901414e-03 -2.8305825e-02 1.3562656e-03]\n [ 4.2788380e-01 1.3824118e+00 -7.8066146e-01 -5.6628928e-02\n 5.8253956e-01 5.4881757e-01 9.3476272e-01 -7.3445484e-02\n 1.0110607e+00 1.4033225e-01 6.9398978e-03 -2.8505651e-02\n 2.3044446e-01 7.9239132e-03 -1.7198008e-02 6.4615265e-02\n 8.2451571e-03 -2.6913345e-02 1.5341410e-03]\n [ 1.4011481e-01 1.3595701e+00 -7.3835921e-01 -4.8699203e-01\n -4.1469905e-01 -1.3700659e+00 9.3470806e-01 -9.5592922e-01\n -3.0381575e-01 1.4032482e-01 6.8584201e-03 -2.8349178e-02\n -2.7061829e-03 7.6965429e-03 -1.7056318e-02 6.4441115e-02\n 6.5901410e-03 -2.8305825e-02 1.2357450e-03]\n [ 2.0267244e-01 -4.3102175e-01 -3.1110048e-01 1.4251949e+00\n -3.3913794e-01 1.3275452e-01 -1.1532602e+00 1.1112559e+00\n -9.2675775e-01 1.4033528e-01 6.8719150e-03 -2.8536854e-02\n -2.6426245e-03 7.6807784e-03 -1.6955493e-02 6.4453781e-02\n 6.5913307e-03 -2.8345708e-02 1.2864018e-03]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAApQTgvT3wpL0K16M879ZJvVHp/jwK16M8so2oPO1sbT0K16M8dN6DvQvewD0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAWdIXPhgr1ryMmrw82VV6O8VoAD5CiME98Ri+vCEu0r3Y0Rs++M7MvcKvYj0K16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAApQTgvT3wpL0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAO/WSb1R6f48CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACyjag87WxtPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAdN6DvQvewD0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
|
44 |
+
"achieved_goal": "[[-0.10938386 -0.08053634 0.02 ]\n [-0.04927724 0.03111711 0.02 ]\n [ 0.02057538 0.05796521 0.02 ]\n [-0.06438914 0.09417351 0.02 ]]",
|
45 |
+
"desired_goal": "[[ 0.14826335 -0.0261436 0.02302291]\n [ 0.00381981 0.12539966 0.09449817]\n [-0.02320525 -0.10262705 0.15216768]\n [-0.10000414 0.0553434 0.02 ]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.0938386e-01\n -8.0536343e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -4.9277242e-02\n 3.1117113e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 2.0575378e-02\n 5.7965208e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -6.4389139e-02\n 9.4173513e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CpTXYetCAudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpTW23rleXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpTYTDn/1hdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpTWqwIMScdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpToB6Skj5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpToAN5MURdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpTpeqrBCVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpTnfNZ/0/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpT5cG1QZXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpT4zqjaf0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpT6Z5Z8rqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpT4sMAmzCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpUJ/SH/LldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpUJrS3LFGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpULiDEm6YdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpUJ0Moc7ydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpUcMd1dPddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpUb4aHbh4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpUeIM8YAKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpUcgqNIbwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpUun3+MqCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpUurwF1SwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpUwMEA5q/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpUuhdD6WPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpU/0elsP8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpVBCPyTY/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpVGDC53C9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpVFhMSK3vdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpVbFiBoVVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpVdDhDPWydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpViKkEcKgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpVhW6kIomdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CpVh0aQ3gldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpV10wBYFJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpV2pAlfJFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpV78iW3SbdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CpV8iE6DGtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpV8G1YyO8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpWRomgJ1JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpWTx7iQ1adX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpWXjEWIoFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpWWndO6/ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpWr8jqv/zdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpWub+T/yYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpW143eenRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpW10Nz8xcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpXLy8BdUsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpXOLe67NCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpXT9zwMH9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpXSNeMQ2/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpXkfHo5ggdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpXkYZ/CqIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpXmwpWmxddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpXlS9mHxjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpX3832mHhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpX4JPAO8TdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpX7NWdVebdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpX5QAlv61dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYL+xwAEMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYL/eDWbxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYOzkhib2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYM4OtnwodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYd84PwuvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYdZVGTcJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYe4CZF5OdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYc8vduYQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYuiHymQ9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYuY7aIvbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYwyV4X41dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYvHoX9BKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZBKTSsr/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZAgD7qIKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZCBEroW6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZAM052hadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZRY3eenRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZRI+W4VidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZTDt5UtJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZRPPcBU8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZjseXAuadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZj0s4DLbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZmVbzK9xdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZksTewcHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZ173Gn4xdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZ1YkVvdedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZ3FEy+HrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZ1PlU6xPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpaGyTpxFRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpaGaOxSpBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpaJBZ6lchdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpaHHlfZ27dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpaYtpM6BAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpaYm/336AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpaakmplz2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpaYrMkhRqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpapnkcS5BdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CpaqFUQ04zdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpapMFEAo5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CparD9n9NvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpapVM23rldX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cpapr8rI5pdWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True True]",
|
82 |
+
"bounded_above": "[ True True True True]",
|
83 |
+
"_shape": [
|
84 |
+
4
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaPickAndPlace-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e515a6e3bbb94a4fd342be20e015c232966ce1fbeda7fce864ca89091f76ba98
|
3 |
+
size 52079
|
a2c-PandaPickAndPlace-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5370956d5b886c45f62712fdd0db2f692bc2f5afbfd960763fdaecf624907ef
|
3 |
+
size 53359
|
a2c-PandaPickAndPlace-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
a2c-PandaPickAndPlace-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c35a3629630>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c35a36230c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1700149888883518760, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAYtMjvxAC1z6Xsw8+lmqWvXBqgT9Csw8+x7d0v72Nm75PsQ8+oj2OP/8/bb8NtA8+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA75DYv9HWNT5/xbw+me22P63Sqz+y228/LoOHPpIO1z/NE7Y/bf7FvhWsz77zAAk/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADtL8I95tXxP8K4QL8zOK6+4JGyvIGZFr/+Q28/YtMjvxAC1z6Xsw8+AHHiO2Cl6bzLdhDATCj9O2Cviry0+YM9HfLXO57h57y5xLE6lhPbPt/ysD9u2Ue/vPNnvVAhFT9Pfww/nExvP5Zqlr1waoE/QrMPPhVo4zuvhOm8ovlrPk3TATzW4oy8AlWEPbIWBzxgedy8OxXJOkJ6Dz5lBq4/HAU9vwVX+b5vU9S+Ul6vvwdJbz/Ht3S/vY2bvk+xDz6ZvOA7iTzovDdaMbtIM/w7sbmLvLT5gz0c8tc7nuHnvLn4oTpdiU8+4q7cvpBIn77JbLY/faOtvs3wBz4InpO/oj2OP/8/bb8NtA8+zS3hOx/G6bziLy27Cq/7Oz/mirxYAIQ9F/zXO0I16Lx7nKg6lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.6399442 0.4199376 0.14033352]\n [-0.07344548 1.0110607 0.14033225]\n [-0.9559292 -0.30381575 0.14032482]\n [ 1.1112559 -0.92675775 0.14033528]]", "desired_goal": "[[-1.691923 0.17757727 0.36869428]\n [ 1.4291259 1.3423668 0.93694603]\n [ 0.2646727 1.6801322 1.4224793 ]\n [-0.38670674 -0.40560976 0.53517073]]", "observation": "[[ 9.4817974e-02 1.8893402e+00 -7.5281918e-01 -3.4027252e-01\n -2.1798074e-02 -5.8827978e-01 9.3463123e-01 -6.3994420e-01\n 4.1993761e-01 1.4033352e-01 6.9104433e-03 -2.8521240e-02\n -2.2572505e+00 7.7257510e-03 -1.6929328e-02 6.4441115e-02\n 6.5901414e-03 -2.8305825e-02 1.3562656e-03]\n [ 4.2788380e-01 1.3824118e+00 -7.8066146e-01 -5.6628928e-02\n 5.8253956e-01 5.4881757e-01 9.3476272e-01 -7.3445484e-02\n 1.0110607e+00 1.4033225e-01 6.9398978e-03 -2.8505651e-02\n 2.3044446e-01 7.9239132e-03 -1.7198008e-02 6.4615265e-02\n 8.2451571e-03 -2.6913345e-02 1.5341410e-03]\n [ 1.4011481e-01 1.3595701e+00 -7.3835921e-01 -4.8699203e-01\n -4.1469905e-01 -1.3700659e+00 9.3470806e-01 -9.5592922e-01\n -3.0381575e-01 1.4032482e-01 6.8584201e-03 -2.8349178e-02\n -2.7061829e-03 7.6965429e-03 -1.7056318e-02 6.4441115e-02\n 6.5901410e-03 -2.8305825e-02 1.2357450e-03]\n [ 2.0267244e-01 -4.3102175e-01 -3.1110048e-01 1.4251949e+00\n -3.3913794e-01 1.3275452e-01 -1.1532602e+00 1.1112559e+00\n -9.2675775e-01 1.4033528e-01 6.8719150e-03 -2.8536854e-02\n -2.6426245e-03 7.6807784e-03 -1.6955493e-02 6.4453781e-02\n 6.5913307e-03 -2.8345708e-02 1.2864018e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAApQTgvT3wpL0K16M879ZJvVHp/jwK16M8so2oPO1sbT0K16M8dN6DvQvewD0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAWdIXPhgr1ryMmrw82VV6O8VoAD5CiME98Ri+vCEu0r3Y0Rs++M7MvcKvYj0K16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAApQTgvT3wpL0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAO/WSb1R6f48CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACyjag87WxtPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAdN6DvQvewD0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.10938386 -0.08053634 0.02 ]\n [-0.04927724 0.03111711 0.02 ]\n [ 0.02057538 0.05796521 0.02 ]\n [-0.06438914 0.09417351 0.02 ]]", "desired_goal": "[[ 0.14826335 -0.0261436 0.02302291]\n [ 0.00381981 0.12539966 0.09449817]\n [-0.02320525 -0.10262705 0.15216768]\n [-0.10000414 0.0553434 0.02 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.0938386e-01\n -8.0536343e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -4.9277242e-02\n 3.1117113e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 2.0575378e-02\n 5.7965208e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -6.4389139e-02\n 9.4173513e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CpTXYetCAudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpTW23rleXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpTYTDn/1hdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpTWqwIMScdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpToB6Skj5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpToAN5MURdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpTpeqrBCVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpTnfNZ/0/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpT5cG1QZXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpT4zqjaf0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpT6Z5Z8rqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpT4sMAmzCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpUJ/SH/LldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpUJrS3LFGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpULiDEm6YdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpUJ0Moc7ydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpUcMd1dPddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpUb4aHbh4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpUeIM8YAKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpUcgqNIbwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpUun3+MqCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpUurwF1SwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpUwMEA5q/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpUuhdD6WPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpU/0elsP8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpVBCPyTY/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpVGDC53C9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpVFhMSK3vdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpVbFiBoVVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpVdDhDPWydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpViKkEcKgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpVhW6kIomdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CpVh0aQ3gldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpV10wBYFJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpV2pAlfJFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpV78iW3SbdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CpV8iE6DGtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpV8G1YyO8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpWRomgJ1JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpWTx7iQ1adX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpWXjEWIoFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpWWndO6/ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpWr8jqv/zdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpWub+T/yYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpW143eenRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpW10Nz8xcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpXLy8BdUsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpXOLe67NCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpXT9zwMH9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpXSNeMQ2/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpXkfHo5ggdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpXkYZ/CqIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpXmwpWmxddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpXlS9mHxjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpX3832mHhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpX4JPAO8TdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpX7NWdVebdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpX5QAlv61dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYL+xwAEMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYL/eDWbxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYOzkhib2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYM4OtnwodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYd84PwuvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYdZVGTcJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYe4CZF5OdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYc8vduYQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYuiHymQ9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYuY7aIvbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYwyV4X41dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYvHoX9BKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZBKTSsr/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZAgD7qIKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZCBEroW6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZAM052hadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZRY3eenRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZRI+W4VidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZTDt5UtJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZRPPcBU8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZjseXAuadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZj0s4DLbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZmVbzK9xdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZksTewcHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZ173Gn4xdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZ1YkVvdedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZ3FEy+HrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZ1PlU6xPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpaGyTpxFRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpaGaOxSpBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpaJBZ6lchdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpaHHlfZ27dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpaYtpM6BAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpaYm/336AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpaakmplz2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpaYrMkhRqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpapnkcS5BdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CpaqFUQ04zdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpapMFEAo5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CparD9n9NvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpapVM23rldX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cpapr8rI5pdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (842 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -50.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-16T16:45:46.566931"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9975fd9d37ccd1aaa5806114fa6bd2a0b014265ee8ba4b355dc006dbd190c2d5
|
3 |
+
size 3013
|