--- license: apache-2.0 base_model: microsoft/beit-base-patch16-224-pt22k-ft22k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: Boya1_SGD_1-e3_20Epoch_09Momentum_Beit-base-patch16_fold2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.41702702702702704 --- # Boya1_SGD_1-e3_20Epoch_09Momentum_Beit-base-patch16_fold2 This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.8092 - Accuracy: 0.4170 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 2.364 | 1.0 | 923 | 2.4299 | 0.2108 | | 2.3719 | 2.0 | 1846 | 2.2817 | 0.2649 | | 2.2408 | 3.0 | 2769 | 2.1860 | 0.2889 | | 2.1829 | 4.0 | 3692 | 2.1102 | 0.3143 | | 2.0369 | 5.0 | 4615 | 2.0577 | 0.3241 | | 2.061 | 6.0 | 5538 | 2.0066 | 0.3419 | | 1.9167 | 7.0 | 6461 | 1.9797 | 0.3568 | | 2.0057 | 8.0 | 7384 | 1.9411 | 0.3673 | | 2.0098 | 9.0 | 8307 | 1.9258 | 0.3722 | | 1.9046 | 10.0 | 9230 | 1.9019 | 0.3822 | | 1.862 | 11.0 | 10153 | 1.8785 | 0.3922 | | 1.8051 | 12.0 | 11076 | 1.8624 | 0.3973 | | 1.8752 | 13.0 | 11999 | 1.8478 | 0.3981 | | 1.9831 | 14.0 | 12922 | 1.8389 | 0.4032 | | 1.8913 | 15.0 | 13845 | 1.8338 | 0.4051 | | 1.9373 | 16.0 | 14768 | 1.8269 | 0.4086 | | 1.8457 | 17.0 | 15691 | 1.8202 | 0.4089 | | 1.7936 | 18.0 | 16614 | 1.8117 | 0.4159 | | 1.7608 | 19.0 | 17537 | 1.8101 | 0.4168 | | 1.9672 | 20.0 | 18460 | 1.8092 | 0.4170 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0 - Datasets 2.14.6 - Tokenizers 0.14.1