File size: 2,059 Bytes
8fcada9 54d68a8 8fcada9 54d68a8 8fcada9 54d68a8 8fcada9 54d68a8 8fcada9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
license: apache-2.0
base_model: microsoft/beit-large-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: Boya3_3Class_Adamax_1e4_20Epoch_Beit-large-224_fold2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8310303987366758
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Boya3_3Class_Adamax_1e4_20Epoch_Beit-large-224_fold2
This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1668
- Accuracy: 0.8310
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.5068 | 1.0 | 631 | 0.4278 | 0.8291 |
| 0.3715 | 2.0 | 1262 | 0.4212 | 0.8235 |
| 0.1578 | 3.0 | 1893 | 0.4810 | 0.8354 |
| 0.0708 | 4.0 | 2524 | 0.9491 | 0.8251 |
| 0.1011 | 5.0 | 3155 | 1.1668 | 0.8310 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.0.1
- Datasets 2.12.0
- Tokenizers 0.13.2
|