File size: 2,383 Bytes
dfc57f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: apache-2.0
base_model: microsoft/beit-large-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: Karma_3Class_RMSprop_1e5_20Epoch_Beit-large-224_fold5
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8569544486151973
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Karma_3Class_RMSprop_1e5_20Epoch_Beit-large-224_fold5

This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6698
- Accuracy: 0.8570

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.3948        | 1.0   | 2468  | 0.3604          | 0.8516   |
| 0.2875        | 2.0   | 4936  | 0.3421          | 0.8614   |
| 0.1919        | 3.0   | 7404  | 0.4622          | 0.8576   |
| 0.1141        | 4.0   | 9872  | 0.7162          | 0.8544   |
| 0.0511        | 5.0   | 12340 | 0.9479          | 0.8535   |
| 0.0188        | 6.0   | 14808 | 1.2229          | 0.8574   |
| 0.0493        | 7.0   | 17276 | 1.4475          | 0.8511   |
| 0.0016        | 8.0   | 19744 | 1.5383          | 0.8569   |
| 0.0398        | 9.0   | 22212 | 1.6405          | 0.8576   |
| 0.0001        | 10.0  | 24680 | 1.6698          | 0.8570   |


### Framework versions

- Transformers 4.32.1
- Pytorch 2.0.1
- Datasets 2.12.0
- Tokenizers 0.13.2