--- license: mit --- This is the trained model for the controlnet-stablediffusion for the scene text eraser. We have to customised the pipeline for the controlnet-stablediffusion-inpaint you will find the code to run the model [here](https://github.com/Onkarsus13/Diff_SceneTextEraser) For direct inference step 1: Clone the GitHub repo to get the customized ControlNet-StableDiffusion-inpaint Pipeline Implementation ``` git clone https://github.com/Onkarsus13/Diff_SceneTextEraser ``` Step2: Go into the repository and install repository, dependency ``` cd Diff_SceneTextEraser pip install -e ".[torch]" pip install -e .[all,dev,notebooks] ``` Step3: Run `python test_eraser.py` OR You can run the code given below ```python from diffusers import ( UniPCMultistepScheduler, DDIMScheduler, EulerAncestralDiscreteScheduler, StableDiffusionControlNetSceneTextErasingPipeline, ) import torch import numpy as np import cv2 from PIL import Image, ImageDraw import math import os device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_path = "onkarsus13/controlnet_stablediffusion_scenetextEraser" pipe = StableDiffusionControlNetSceneTextErasingPipeline.from_pretrained(model_path) pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.to(device) # pipe.enable_xformers_memory_efficient_attention() pipe.enable_model_cpu_offload() generator = torch.Generator(device).manual_seed(1) image = Image.open("").resize((512, 512)) mask_image = Image.open('').resize((512, 512)) image = pipe( image, mask_image, [mask_image], num_inference_steps=20, generator=generator, controlnet_conditioning_scale=1.0, guidance_scale=1.0 ).images[0] image.save('test1.png') ```