Xenova HF staff commited on
Commit
5fc2cee
1 Parent(s): 3ee7754

Delete modeling_jais.py

Browse files
Files changed (1) hide show
  1. modeling_jais.py +0 -1522
modeling_jais.py DELETED
@@ -1,1522 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2023 The OpenAI Team Authors and HuggingFace Inc. team.
3
- # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
- # Copyright 2023 G42 Systems.
5
- #
6
- # Licensed under the Apache License, Version 2.0 (the "License");
7
- # you may not use this file except in compliance with the License.
8
- # You may obtain a copy of the License at
9
- #
10
- # http://www.apache.org/licenses/LICENSE-2.0
11
- #
12
- # Unless required by applicable law or agreed to in writing, software
13
- # distributed under the License is distributed on an "AS IS" BASIS,
14
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
- # See the License for the specific language governing permissions and
16
- # limitations under the License.
17
- """ PyTorch JAIS model."""
18
-
19
- import math
20
- import os
21
- import warnings
22
- from typing import Optional, Tuple, Union
23
-
24
- import torch
25
- from torch import Tensor, nn
26
- from torch.cuda.amp import autocast
27
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
28
-
29
- from transformers.activations import ACT2FN
30
- from transformers.modeling_outputs import (
31
- BaseModelOutputWithPastAndCrossAttentions,
32
- CausalLMOutputWithCrossAttentions,
33
- QuestionAnsweringModelOutput,
34
- SequenceClassifierOutputWithPast,
35
- TokenClassifierOutput,
36
- )
37
- from transformers.modeling_utils import PreTrainedModel
38
- from transformers.pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer
39
- from transformers.utils import (
40
- add_code_sample_docstrings,
41
- add_start_docstrings,
42
- add_start_docstrings_to_model_forward,
43
- logging,
44
- )
45
- from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
46
- from .configuration_jais import JAISConfig
47
-
48
-
49
- logger = logging.get_logger(__name__)
50
-
51
- _CHECKPOINT_FOR_DOC = "IIAI/checkpoint"
52
- _CONFIG_FOR_DOC = "JAISConfig"
53
-
54
-
55
- class SwiGLUActivation(nn.Module):
56
- def forward(self, x1: Tensor, x2: Tensor) -> Tensor:
57
- return x1 * nn.functional.silu(x2)
58
-
59
-
60
- class AlibiPositionEmbeddingLayer(nn.Module):
61
- def __init__(self, num_heads):
62
- super(AlibiPositionEmbeddingLayer, self).__init__()
63
-
64
- self.num_heads = num_heads
65
- slopes = torch.tensor(
66
- AlibiPositionEmbeddingLayer._get_alibi_slopes(num_heads)
67
- ).unsqueeze(-1)
68
- self.slopes = nn.parameter.Parameter(slopes, requires_grad=False)
69
-
70
- def forward(self, seq_length, key_length, cached_qk_len):
71
- context_position = torch.arange(
72
- cached_qk_len, cached_qk_len + seq_length, device=self.slopes.device
73
- )[:, None]
74
- memory_position = torch.arange(
75
- key_length + cached_qk_len, device=self.slopes.device
76
- )[None, :]
77
- relative_position = memory_position - context_position
78
- relative_position = torch.abs(relative_position).unsqueeze(0).expand(self.num_heads, -1, -1)
79
- alibi = (self.slopes * -1.0).unsqueeze(1) * relative_position
80
- return alibi
81
-
82
- @staticmethod
83
- def _get_alibi_slopes(n):
84
- def get_slopes_power_of_2(n):
85
- start = 2 ** (-(2 ** -(math.log2(n) - 3)))
86
- ratio = start
87
- return [start * ratio ** i for i in range(n)]
88
-
89
- if math.log2(n).is_integer():
90
- return get_slopes_power_of_2(
91
- n
92
- ) # In the paper, we only train models that have 2^a heads for some a. This function has
93
- else: # some good properties that only occur when the input is a power of 2. To maintain that even
94
- closest_power_of_2 = 2 ** math.floor(
95
- math.log2(n)
96
- ) # when the number of heads is not a power of 2, we use this workaround.
97
- return (
98
- get_slopes_power_of_2(closest_power_of_2)
99
- + AlibiPositionEmbeddingLayer._get_alibi_slopes(
100
- 2 * closest_power_of_2
101
- )[0::2][: n - closest_power_of_2]
102
- )
103
-
104
-
105
- def load_tf_weights_in_jais(model, config, jais_checkpoint_path):
106
- """Load tf checkpoints in a pytorch model"""
107
- try:
108
- import re
109
-
110
- import tensorflow as tf
111
- except ImportError:
112
- logger.error(
113
- "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
114
- "https://www.tensorflow.org/install/ for installation instructions."
115
- )
116
- raise
117
- tf_path = os.path.abspath(jais_checkpoint_path)
118
- logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
119
- # Load weights from TF model
120
- init_vars = tf.train.list_variables(tf_path)
121
- names = []
122
- arrays = []
123
- for name, shape in init_vars:
124
- logger.info(f"Loading TF weight {name} with shape {shape}")
125
- array = tf.train.load_variable(tf_path, name)
126
- names.append(name)
127
- arrays.append(array.squeeze())
128
-
129
- for name, array in zip(names, arrays):
130
- name = name[6:] # skip "model/"
131
- name = name.split("/")
132
- pointer = model
133
- for m_name in name:
134
- if re.fullmatch(r"[A-Za-z]+\d+", m_name):
135
- scope_names = re.split(r"(\d+)", m_name)
136
- else:
137
- scope_names = [m_name]
138
- if scope_names[0] == "w" or scope_names[0] == "g":
139
- pointer = getattr(pointer, "weight")
140
- elif scope_names[0] == "b":
141
- pointer = getattr(pointer, "bias")
142
- elif scope_names[0] == "wpe" or scope_names[0] == "wte":
143
- pointer = getattr(pointer, scope_names[0])
144
- pointer = getattr(pointer, "weight")
145
- else:
146
- pointer = getattr(pointer, scope_names[0])
147
- if len(scope_names) >= 2:
148
- num = int(scope_names[1])
149
- pointer = pointer[num]
150
- try:
151
- assert (
152
- pointer.shape == array.shape
153
- ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
154
- except AssertionError as e:
155
- e.args += (pointer.shape, array.shape)
156
- raise
157
- logger.info(f"Initialize PyTorch weight {name}")
158
- pointer.data = torch.from_numpy(array)
159
- return model
160
-
161
-
162
- class JAISAttention(nn.Module):
163
- def __init__(self, config, is_cross_attention=False, layer_idx=None):
164
- super().__init__()
165
-
166
- max_positions = config.max_position_embeddings
167
- self.register_buffer(
168
- "bias",
169
- torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
170
- 1, 1, max_positions, max_positions
171
- ),
172
- persistent=False,
173
- )
174
- self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
175
-
176
- self.embed_dim = config.hidden_size
177
- self.num_heads = config.num_attention_heads
178
- self.head_dim = self.embed_dim // self.num_heads
179
- self.split_size = self.embed_dim
180
- if self.head_dim * self.num_heads != self.embed_dim:
181
- raise ValueError(
182
- f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
183
- f" {self.num_heads})."
184
- )
185
-
186
- self.scale_attn_weights = config.scale_attn_weights
187
- self.is_cross_attention = is_cross_attention
188
-
189
- # Layer-wise attention scaling, reordering, and upcasting
190
- self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx
191
- self.layer_idx = layer_idx
192
- self.reorder_and_upcast_attn = config.reorder_and_upcast_attn
193
-
194
- if self.is_cross_attention:
195
- self.c_attn = Conv1D(2 * self.embed_dim, self.embed_dim)
196
- self.q_attn = Conv1D(self.embed_dim, self.embed_dim)
197
- else:
198
- self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim)
199
- self.c_proj = Conv1D(self.embed_dim, self.embed_dim)
200
-
201
- self.attn_dropout = nn.Dropout(config.attn_pdrop)
202
- self.resid_dropout = nn.Dropout(config.resid_pdrop)
203
-
204
- self.pruned_heads = set()
205
-
206
- self.attn_scale_power = 1.0 if config.scale_qk_dot_by_d else 0.5
207
-
208
- def prune_heads(self, heads):
209
- if len(heads) == 0:
210
- return
211
- heads, index = find_pruneable_heads_and_indices(heads, self.num_heads, self.head_dim, self.pruned_heads)
212
- index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)])
213
-
214
- # Prune conv1d layers
215
- self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
216
- self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
217
-
218
- # Update hyper params
219
- self.split_size = (self.split_size // self.num_heads) * (self.num_heads - len(heads))
220
- self.num_heads = self.num_heads - len(heads)
221
- self.pruned_heads = self.pruned_heads.union(heads)
222
-
223
- def _attn(self, query, key, value, attention_mask=None, head_mask=None, position_bias=None):
224
- attn_weights = torch.matmul(query, key.transpose(-1, -2))
225
-
226
- if self.scale_attn_weights:
227
- attn_weights = attn_weights / torch.full(
228
- [], value.size(-1) ** self.attn_scale_power, dtype=attn_weights.dtype, device=attn_weights.device
229
- )
230
-
231
- # Layer-wise attention scaling
232
- if self.scale_attn_by_inverse_layer_idx:
233
- attn_weights = attn_weights / float(self.layer_idx + 1)
234
-
235
- if not self.is_cross_attention:
236
- # if only "normal" attention layer implements causal mask
237
- query_length, key_length = query.size(-2), key.size(-2)
238
- causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
239
- mask_value = torch.finfo(attn_weights.dtype).min
240
- # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
241
- # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
242
- mask_value = torch.full([], mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
243
- attn_weights = torch.where(causal_mask, attn_weights.to(attn_weights.dtype), mask_value)
244
-
245
- if attention_mask is not None:
246
- # Apply the attention mask
247
- attn_weights = attn_weights + attention_mask
248
-
249
- if position_bias is not None:
250
- attn_weights += position_bias.type_as(attn_weights).unsqueeze(0)
251
- attn_weights = nn.functional.softmax(attn_weights, dim=-1)
252
-
253
- # Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op otherwise
254
- attn_weights = attn_weights.type(value.dtype)
255
- attn_weights = self.attn_dropout(attn_weights)
256
-
257
- # Mask heads if we want to
258
- if head_mask is not None:
259
- attn_weights = attn_weights * head_mask
260
-
261
- attn_output = torch.matmul(attn_weights, value)
262
-
263
- return attn_output, attn_weights
264
-
265
- def _upcast_and_reordered_attn(self, query, key, value, attention_mask=None, head_mask=None, position_bias=None):
266
- # Use `torch.baddbmm` (a bit more efficient w/ alpha param for scaling -- from Megatron-LM)
267
- bsz, num_heads, q_seq_len, dk = query.size()
268
- _, _, k_seq_len, _ = key.size()
269
-
270
- # Preallocate attn_weights for `baddbmm`
271
- attn_weights = torch.empty(bsz * num_heads, q_seq_len, k_seq_len, dtype=torch.float32, device=query.device)
272
-
273
- # Compute Scale Factor
274
- scale_factor = 1.0
275
- if self.scale_attn_weights:
276
- scale_factor /= float(value.size(-1)) ** self.attn_scale_power
277
-
278
- if self.scale_attn_by_inverse_layer_idx:
279
- scale_factor /= float(self.layer_idx + 1)
280
-
281
- # Upcast (turn off autocast) and reorder (Scale K by 1 / root(dk))
282
- with autocast(enabled=False):
283
- q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(-1, dk, k_seq_len)
284
- attn_weights = torch.baddbmm(attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor)
285
- attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)
286
-
287
- if not self.is_cross_attention:
288
- # if only "normal" attention layer implements causal mask
289
- query_length, key_length = query.size(-2), key.size(-2)
290
- causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
291
- mask_value = torch.finfo(attn_weights.dtype).min
292
- # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
293
- # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
294
- mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
295
- attn_weights = torch.where(causal_mask, attn_weights, mask_value)
296
-
297
- if attention_mask is not None:
298
- # Apply the attention mask
299
- attn_weights = attn_weights + attention_mask
300
-
301
- if position_bias is not None:
302
- attn_weights += position_bias.type_as(attn_weights).unsqueeze(0)
303
- attn_weights = nn.functional.softmax(attn_weights, dim=-1)
304
-
305
- # Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op if otherwise
306
- if attn_weights.dtype != torch.float32:
307
- raise RuntimeError("Error with upcasting, attn_weights does not have dtype torch.float32")
308
- attn_weights = attn_weights.type(value.dtype)
309
- attn_weights = self.attn_dropout(attn_weights)
310
-
311
- # Mask heads if we want to
312
- if head_mask is not None:
313
- attn_weights = attn_weights * head_mask
314
-
315
- attn_output = torch.matmul(attn_weights, value)
316
-
317
- return attn_output, attn_weights
318
-
319
- def _split_heads(self, tensor, num_heads, attn_head_size):
320
- """
321
- Splits hidden_size dim into attn_head_size and num_heads
322
- """
323
- new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
324
- tensor = tensor.view(new_shape)
325
- return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
326
-
327
- def _merge_heads(self, tensor, num_heads, attn_head_size):
328
- """
329
- Merges attn_head_size dim and num_attn_heads dim into hidden_size
330
- """
331
- tensor = tensor.permute(0, 2, 1, 3).contiguous()
332
- new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
333
- return tensor.view(new_shape)
334
-
335
- def forward(
336
- self,
337
- hidden_states: Optional[Tuple[torch.FloatTensor]],
338
- layer_past: Optional[Tuple[torch.Tensor]] = None,
339
- attention_mask: Optional[torch.FloatTensor] = None,
340
- head_mask: Optional[torch.FloatTensor] = None,
341
- encoder_hidden_states: Optional[torch.Tensor] = None,
342
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
343
- use_cache: Optional[bool] = False,
344
- output_attentions: Optional[bool] = False,
345
- position_bias: Optional[torch.FloatTensor] = None,
346
- ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
347
- if encoder_hidden_states is not None:
348
- if not hasattr(self, "q_attn"):
349
- raise ValueError(
350
- "If class is used as cross attention, the weights `q_attn` have to be defined. "
351
- "Please make sure to instantiate class with `JAISAttention(..., is_cross_attention=True)`."
352
- )
353
-
354
- query = self.q_attn(hidden_states)
355
- key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2)
356
- attention_mask = encoder_attention_mask
357
- else:
358
- query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)
359
-
360
- query = self._split_heads(query, self.num_heads, self.head_dim)
361
- key = self._split_heads(key, self.num_heads, self.head_dim)
362
- value = self._split_heads(value, self.num_heads, self.head_dim)
363
-
364
- if layer_past is not None:
365
- past_key, past_value = layer_past
366
- key = torch.cat((past_key, key), dim=-2)
367
- value = torch.cat((past_value, value), dim=-2)
368
-
369
- if use_cache is True:
370
- present = (key, value)
371
- else:
372
- present = None
373
-
374
- if self.reorder_and_upcast_attn:
375
- attn_output, attn_weights = self._upcast_and_reordered_attn(query, key, value, attention_mask, head_mask, position_bias)
376
- else:
377
- attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask, position_bias)
378
-
379
- attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
380
- attn_output = self.c_proj(attn_output)
381
- attn_output = self.resid_dropout(attn_output)
382
-
383
- outputs = (attn_output, present)
384
- if output_attentions:
385
- outputs += (attn_weights,)
386
-
387
- return outputs # a, present, (attentions)
388
-
389
-
390
- class JAISMLP(nn.Module):
391
- def __init__(self, intermediate_size, config):
392
- super().__init__()
393
- embed_dim = config.hidden_size
394
- self.swiglu = config.activation_function == "swiglu"
395
- self.c_fc = Conv1D(intermediate_size, embed_dim)
396
- self.c_fc2 = Conv1D(intermediate_size, embed_dim) if self.swiglu else None
397
- self.c_proj = Conv1D(embed_dim, intermediate_size)
398
- self.act = SwiGLUActivation() if self.swiglu else ACT2FN[config.activation_function]
399
- self.dropout = nn.Dropout(config.resid_pdrop)
400
-
401
- def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
402
- if self.swiglu:
403
- hidden_states2 = self.c_fc2(hidden_states)
404
- hidden_states = self.c_fc(hidden_states)
405
- hidden_states = self.act(hidden_states, hidden_states2) if self.swiglu else self.act(hidden_states)
406
- hidden_states = self.c_proj(hidden_states)
407
- hidden_states = self.dropout(hidden_states)
408
- return hidden_states
409
-
410
-
411
- class JAISBlock(nn.Module):
412
- def __init__(self, config, layer_idx=None):
413
- super().__init__()
414
- hidden_size = config.hidden_size
415
- inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
416
-
417
- self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
418
- self.attn = JAISAttention(config, layer_idx=layer_idx)
419
- self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
420
-
421
- if config.add_cross_attention:
422
- self.crossattention = JAISAttention(config, is_cross_attention=True, layer_idx=layer_idx)
423
- self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
424
-
425
- self.mlp = JAISMLP(inner_dim, config)
426
-
427
- def forward(
428
- self,
429
- hidden_states: Optional[Tuple[torch.FloatTensor]],
430
- layer_past: Optional[Tuple[torch.Tensor]] = None,
431
- attention_mask: Optional[torch.FloatTensor] = None,
432
- head_mask: Optional[torch.FloatTensor] = None,
433
- encoder_hidden_states: Optional[torch.Tensor] = None,
434
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
435
- use_cache: Optional[bool] = False,
436
- output_attentions: Optional[bool] = False,
437
- position_bias: Optional[torch.FloatTensor] = None,
438
- ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
439
- residual = hidden_states
440
- hidden_states = self.ln_1(hidden_states)
441
- attn_outputs = self.attn(
442
- hidden_states,
443
- layer_past=layer_past,
444
- attention_mask=attention_mask,
445
- head_mask=head_mask,
446
- use_cache=use_cache,
447
- output_attentions=output_attentions,
448
- position_bias=position_bias,
449
- )
450
- attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
451
- outputs = attn_outputs[1:]
452
- # residual connection
453
- hidden_states = attn_output + residual
454
-
455
- if encoder_hidden_states is not None:
456
- # add one self-attention block for cross-attention
457
- if not hasattr(self, "crossattention"):
458
- raise ValueError(
459
- f"If `encoder_hidden_states` are passed, {self} has to be instantiated with "
460
- "cross-attention layers by setting `config.add_cross_attention=True`"
461
- )
462
- residual = hidden_states
463
- hidden_states = self.ln_cross_attn(hidden_states)
464
- cross_attn_outputs = self.crossattention(
465
- hidden_states,
466
- attention_mask=attention_mask,
467
- head_mask=head_mask,
468
- encoder_hidden_states=encoder_hidden_states,
469
- encoder_attention_mask=encoder_attention_mask,
470
- output_attentions=output_attentions,
471
- position_bias=position_bias,
472
- )
473
- attn_output = cross_attn_outputs[0]
474
- # residual connection
475
- hidden_states = residual + attn_output
476
- outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights
477
-
478
- residual = hidden_states
479
- hidden_states = self.ln_2(hidden_states)
480
- feed_forward_hidden_states = self.mlp(hidden_states)
481
- # residual connection
482
- hidden_states = residual + feed_forward_hidden_states
483
-
484
- if use_cache:
485
- outputs = (hidden_states,) + outputs
486
- else:
487
- outputs = (hidden_states,) + outputs[1:]
488
-
489
- return outputs # hidden_states, present, (attentions, cross_attentions)
490
-
491
-
492
- class JAISPreTrainedModel(PreTrainedModel):
493
- """
494
- An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
495
- models.
496
- """
497
-
498
- config_class = JAISConfig
499
- load_tf_weights = load_tf_weights_in_jais
500
- base_model_prefix = "transformer"
501
- is_parallelizable = True
502
- supports_gradient_checkpointing = True
503
- _no_split_modules = ["JAISBlock"]
504
- _skip_keys_device_placement = "past_key_values"
505
-
506
- def __init__(self, *inputs, **kwargs):
507
- super().__init__(*inputs, **kwargs)
508
-
509
- def _init_weights(self, module):
510
- """Initialize the weights."""
511
- mup_init_scale = math.sqrt(self.config.width_scale)
512
- if isinstance(module, (nn.Linear, Conv1D)):
513
- # Slightly different from the TF version which uses truncated_normal for initialization
514
- # cf https://github.com/pytorch/pytorch/pull/5617
515
- module.weight.data.normal_(mean=0.0, std=(self.config.initializer_range * mup_init_scale))
516
- if module.bias is not None:
517
- module.bias.data.zero_()
518
- elif isinstance(module, nn.Embedding):
519
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
520
- if module.padding_idx is not None:
521
- module.weight.data[module.padding_idx].zero_()
522
- elif isinstance(module, nn.LayerNorm):
523
- module.bias.data.zero_()
524
- module.weight.data.fill_(1.0)
525
-
526
- # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
527
- # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
528
- # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
529
- # > -- GPT-2 :: https://openai.com/blog/better-language-models/
530
- #
531
- # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
532
- for name, p in module.named_parameters():
533
- if name == "c_proj.weight":
534
- # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
535
- stddev = self.config.initializer_range * mup_init_scale / math.sqrt(2 * self.config.n_layer)
536
- p.data.normal_(mean=0.0, std=stddev)
537
-
538
- def _set_gradient_checkpointing(self, module, value=False):
539
- if isinstance(module, JAISModel):
540
- module.gradient_checkpointing = value
541
-
542
-
543
- JAIS_START_DOCSTRING = r"""
544
-
545
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
546
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
547
- etc.)
548
-
549
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
550
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
551
- and behavior.
552
-
553
- Parameters:
554
- config ([`JAISConfig`]): Model configuration class with all the parameters of the model.
555
- Initializing with a config file does not load the weights associated with the model, only the
556
- configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
557
- """
558
-
559
- JAIS_INPUTS_DOCSTRING = r"""
560
- Args:
561
- input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
562
- `input_ids_length` = `sequence_length` if `past_key_values` is `None` else
563
- `past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
564
- sequence tokens in the vocabulary.
565
-
566
- If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
567
- `input_ids`.
568
-
569
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
570
- [`PreTrainedTokenizer.__call__`] for details.
571
-
572
- [What are input IDs?](../glossary#input-ids)
573
- past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`):
574
- Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
575
- `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
576
- their past given to this model should not be passed as `input_ids` as they have already been computed.
577
- attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
578
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
579
-
580
- - 1 for tokens that are **not masked**,
581
- - 0 for tokens that are **masked**.
582
-
583
- If `past_key_values` is used, `attention_mask` needs to contain the masking strategy that was used for
584
- `past_key_values`. In other words, the `attention_mask` always has to have the length:
585
- `len(past_key_values) + len(input_ids)`
586
-
587
- [What are attention masks?](../glossary#attention-mask)
588
- token_type_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
589
- Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
590
- 1]`:
591
-
592
- - 0 corresponds to a *sentence A* token,
593
- - 1 corresponds to a *sentence B* token.
594
-
595
- [What are token type IDs?](../glossary#token-type-ids)
596
- position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
597
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
598
- config.max_position_embeddings - 1]`.
599
-
600
- [What are position IDs?](../glossary#position-ids)
601
- head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
602
- Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
603
-
604
- - 1 indicates the head is **not masked**,
605
- - 0 indicates the head is **masked**.
606
-
607
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
608
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
609
- is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
610
- model's internal embedding lookup matrix.
611
-
612
- If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
613
- `past_key_values`).
614
- use_cache (`bool`, *optional*):
615
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
616
- `past_key_values`).
617
- output_attentions (`bool`, *optional*):
618
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
619
- tensors for more detail.
620
- output_hidden_states (`bool`, *optional*):
621
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
622
- more detail.
623
- return_dict (`bool`, *optional*):
624
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
625
- """
626
- PARALLELIZE_DOCSTRING = r"""
627
- This is an experimental feature and is a subject to change at a moment's notice.
628
-
629
- Uses a device map to distribute attention modules of the model across several devices. If no device map is given,
630
- it will evenly distribute blocks across all devices.
631
-
632
- Args:
633
- device_map (`Dict[int, list]`, optional, defaults to None):
634
- A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always
635
- automatically mapped to the first device (for esoteric reasons). That means that the first device should
636
- have fewer attention modules mapped to it than other devices. For reference, the gpt2 models have the
637
- following number of attention modules:
638
-
639
- - gpt2: 12
640
- - gpt2-medium: 24
641
- - gpt2-large: 36
642
- - gpt2-xl: 48
643
-
644
- Example:
645
-
646
- ```python
647
- # Here is an example of a device map on a machine with 4 GPUs using gpt2-xl, which has a total of 48 attention modules:
648
- model = GPT2LMHeadModel.from_pretrained("gpt2-xl")
649
- device_map = {
650
- 0: [0, 1, 2, 3, 4, 5, 6, 7, 8],
651
- 1: [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21],
652
- 2: [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34],
653
- 3: [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47],
654
- }
655
- model.parallelize(device_map)
656
- ```
657
- """
658
- DEPARALLELIZE_DOCSTRING = r"""
659
- Moves the model to cpu from a model parallel state.
660
-
661
- Example:
662
-
663
- ```python
664
- # On a 4 GPU machine with gpt2-large:
665
- model = GPT2LMHeadModel.from_pretrained("gpt2-large")
666
- device_map = {
667
- 0: [0, 1, 2, 3, 4, 5, 6, 7],
668
- 1: [8, 9, 10, 11, 12, 13, 14, 15],
669
- 2: [16, 17, 18, 19, 20, 21, 22, 23],
670
- 3: [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35],
671
- }
672
- model.parallelize(device_map) # Splits the model across several devices
673
- model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
674
- ```
675
- """
676
-
677
-
678
- @add_start_docstrings(
679
- "The bare JAIS Model transformer outputting raw hidden-states without any specific head on top.",
680
- JAIS_START_DOCSTRING,
681
- )
682
- class JAISModel(JAISPreTrainedModel):
683
- _keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"]
684
- _keys_to_ignore_on_load_missing = [r"attn.masked_bias", r"h\.\d+\.attn\.masked_bias", r"h\.\d+\.attn\.bias"]
685
-
686
- def __init__(self, config):
687
- super().__init__(config)
688
-
689
- self.embed_dim = config.hidden_size
690
-
691
- self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
692
- self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim) if config.position_embedding_type != "alibi" else None
693
- self.embeddings_scale = config.embeddings_scale
694
-
695
- self.drop = nn.Dropout(config.embd_pdrop)
696
- self.h = nn.ModuleList([JAISBlock(config, layer_idx=i) for i in range(config.num_hidden_layers)])
697
- self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
698
-
699
- self.relative_pe = AlibiPositionEmbeddingLayer(config.num_attention_heads) if config.position_embedding_type == "alibi" else None
700
-
701
- # Model parallel
702
- self.model_parallel = False
703
- self.device_map = None
704
- self.gradient_checkpointing = False
705
-
706
- # Initialize weights and apply final processing
707
- self.post_init()
708
-
709
- @add_start_docstrings(PARALLELIZE_DOCSTRING)
710
- def parallelize(self, device_map=None):
711
- # Check validity of device_map
712
- warnings.warn(
713
- "`JAISModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your"
714
- " model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
715
- " `device_map` but it needs to be a dictionary module_name to device, so for instance {'h.0': 0, 'h.1': 1,"
716
- " ...}",
717
- FutureWarning,
718
- )
719
- self.device_map = (
720
- get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map
721
- )
722
- assert_device_map(self.device_map, len(self.h))
723
- self.model_parallel = True
724
- self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
725
- self.last_device = "cuda:" + str(max(self.device_map.keys()))
726
- self.wte = self.wte.to(self.first_device)
727
- if self.wpe is not None:
728
- self.wpe = self.wpe.to(self.first_device)
729
- # Load onto devices
730
- for k, v in self.device_map.items():
731
- for block in v:
732
- cuda_device = "cuda:" + str(k)
733
- self.h[block] = self.h[block].to(cuda_device)
734
- # ln_f to last
735
- self.ln_f = self.ln_f.to(self.last_device)
736
-
737
- @add_start_docstrings(DEPARALLELIZE_DOCSTRING)
738
- def deparallelize(self):
739
- warnings.warn(
740
- "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
741
- FutureWarning,
742
- )
743
- self.model_parallel = False
744
- self.device_map = None
745
- self.first_device = "cpu"
746
- self.last_device = "cpu"
747
- self.wte = self.wte.to("cpu")
748
- if self.wpe is not None:
749
- self.wpe = self.wpe.to("cpu")
750
- for index in range(len(self.h)):
751
- self.h[index] = self.h[index].to("cpu")
752
- self.ln_f = self.ln_f.to("cpu")
753
- torch.cuda.empty_cache()
754
-
755
- def get_input_embeddings(self):
756
- return self.wte
757
-
758
- def set_input_embeddings(self, new_embeddings):
759
- self.wte = new_embeddings
760
-
761
- def _prune_heads(self, heads_to_prune):
762
- """
763
- Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
764
- """
765
- for layer, heads in heads_to_prune.items():
766
- self.h[layer].attn.prune_heads(heads)
767
-
768
- @add_start_docstrings_to_model_forward(JAIS_INPUTS_DOCSTRING)
769
- @add_code_sample_docstrings(
770
- checkpoint=_CHECKPOINT_FOR_DOC,
771
- output_type=BaseModelOutputWithPastAndCrossAttentions,
772
- config_class=_CONFIG_FOR_DOC,
773
- )
774
- def forward(
775
- self,
776
- input_ids: Optional[torch.LongTensor] = None,
777
- past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
778
- attention_mask: Optional[torch.FloatTensor] = None,
779
- token_type_ids: Optional[torch.LongTensor] = None,
780
- position_ids: Optional[torch.LongTensor] = None,
781
- head_mask: Optional[torch.FloatTensor] = None,
782
- inputs_embeds: Optional[torch.FloatTensor] = None,
783
- encoder_hidden_states: Optional[torch.Tensor] = None,
784
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
785
- use_cache: Optional[bool] = None,
786
- output_attentions: Optional[bool] = None,
787
- output_hidden_states: Optional[bool] = None,
788
- return_dict: Optional[bool] = None,
789
- ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
790
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
791
- output_hidden_states = (
792
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
793
- )
794
- use_cache = use_cache if use_cache is not None else self.config.use_cache
795
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
796
-
797
- if input_ids is not None and inputs_embeds is not None:
798
- raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
799
- elif input_ids is not None:
800
- input_shape = input_ids.size()
801
- input_ids = input_ids.view(-1, input_shape[-1])
802
- batch_size = input_ids.shape[0]
803
- elif inputs_embeds is not None:
804
- input_shape = inputs_embeds.size()[:-1]
805
- batch_size = inputs_embeds.shape[0]
806
- else:
807
- raise ValueError("You have to specify either input_ids or inputs_embeds")
808
-
809
- device = input_ids.device if input_ids is not None else inputs_embeds.device
810
-
811
- if token_type_ids is not None:
812
- token_type_ids = token_type_ids.view(-1, input_shape[-1])
813
- if position_ids is not None:
814
- position_ids = position_ids.view(-1, input_shape[-1])
815
-
816
- if past_key_values is None:
817
- past_length = 0
818
- past_key_values = tuple([None] * len(self.h))
819
- else:
820
- past_length = past_key_values[0][0].size(-2)
821
- if position_ids is None:
822
- position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
823
- position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
824
-
825
- # JAISAttention mask.
826
- if attention_mask is not None:
827
- if batch_size <= 0:
828
- raise ValueError("batch_size has to be defined and > 0")
829
- attention_mask = attention_mask.view(batch_size, -1)
830
- # We create a 3D attention mask from a 2D tensor mask.
831
- # Sizes are [batch_size, 1, 1, to_seq_length]
832
- # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
833
- # this attention mask is more simple than the triangular masking of causal attention
834
- # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
835
- attention_mask = attention_mask[:, None, None, :]
836
-
837
- # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
838
- # masked positions, this operation will create a tensor which is 0.0 for
839
- # positions we want to attend and the dtype's smallest value for masked positions.
840
- # Since we are adding it to the raw scores before the softmax, this is
841
- # effectively the same as removing these entirely.
842
- attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
843
- attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
844
-
845
- # If a 2D or 3D attention mask is provided for the cross-attention
846
- # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
847
- if self.config.add_cross_attention and encoder_hidden_states is not None:
848
- encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
849
- encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
850
- if encoder_attention_mask is None:
851
- encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
852
- encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
853
- else:
854
- encoder_attention_mask = None
855
-
856
- # Prepare head mask if needed
857
- # 1.0 in head_mask indicate we keep the head
858
- # attention_probs has shape bsz x n_heads x N x N
859
- # head_mask has shape n_layer x batch x n_heads x N x N
860
- head_mask = self.get_head_mask(head_mask, self.config.n_layer)
861
-
862
- if inputs_embeds is None:
863
- inputs_embeds = self.wte(input_ids)
864
- if self.wpe is not None:
865
- position_embeds = self.wpe(position_ids)
866
- hidden_states = inputs_embeds + position_embeds
867
- else:
868
- hidden_states = inputs_embeds
869
- hidden_states *= torch.tensor(
870
- float(self.embeddings_scale), dtype=hidden_states.dtype, device=hidden_states.device
871
- )
872
-
873
- if token_type_ids is not None:
874
- token_type_embeds = self.wte(token_type_ids)
875
- hidden_states = hidden_states + token_type_embeds
876
-
877
- hidden_states = self.drop(hidden_states)
878
-
879
- if self.relative_pe is not None:
880
- length = input_ids.shape[1]
881
- cached_kv_length = 0
882
- cached_kv = past_key_values[0]
883
- if cached_kv is not None:
884
- cached_kv_length = cached_kv[0].shape[-2]
885
- position_bias = self.relative_pe(length, length, cached_kv_length)
886
- else:
887
- position_bias = None
888
-
889
- output_shape = input_shape + (hidden_states.size(-1),)
890
-
891
- if self.gradient_checkpointing and self.training:
892
- if use_cache:
893
- logger.warning_once(
894
- "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
895
- )
896
- use_cache = False
897
-
898
- presents = () if use_cache else None
899
- all_self_attentions = () if output_attentions else None
900
- all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
901
- all_hidden_states = () if output_hidden_states else None
902
- for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
903
- # Model parallel
904
- if self.model_parallel:
905
- torch.cuda.set_device(hidden_states.device)
906
- # Ensure layer_past is on same device as hidden_states (might not be correct)
907
- if layer_past is not None:
908
- layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
909
- # Ensure that attention_mask is always on the same device as hidden_states
910
- if attention_mask is not None:
911
- attention_mask = attention_mask.to(hidden_states.device)
912
- if isinstance(head_mask, torch.Tensor):
913
- head_mask = head_mask.to(hidden_states.device)
914
- if output_hidden_states:
915
- all_hidden_states = all_hidden_states + (hidden_states,)
916
-
917
- if self.gradient_checkpointing and self.training:
918
-
919
- def create_custom_forward(module):
920
- def custom_forward(*inputs):
921
- # None for past_key_value
922
- return module(*inputs, use_cache, output_attentions)
923
-
924
- return custom_forward
925
-
926
- outputs = torch.utils.checkpoint.checkpoint(
927
- create_custom_forward(block),
928
- hidden_states,
929
- None,
930
- attention_mask,
931
- head_mask[i],
932
- encoder_hidden_states,
933
- encoder_attention_mask,
934
- )
935
- else:
936
- outputs = block(
937
- hidden_states,
938
- layer_past=layer_past,
939
- attention_mask=attention_mask,
940
- head_mask=head_mask[i],
941
- encoder_hidden_states=encoder_hidden_states,
942
- encoder_attention_mask=encoder_attention_mask,
943
- use_cache=use_cache,
944
- output_attentions=output_attentions,
945
- position_bias=position_bias,
946
- )
947
-
948
- hidden_states = outputs[0]
949
- if use_cache is True:
950
- presents = presents + (outputs[1],)
951
-
952
- if output_attentions:
953
- all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
954
- if self.config.add_cross_attention:
955
- all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
956
-
957
- # Model Parallel: If it's the last layer for that device, put things on the next device
958
- if self.model_parallel:
959
- for k, v in self.device_map.items():
960
- if i == v[-1] and "cuda:" + str(k) != self.last_device:
961
- hidden_states = hidden_states.to("cuda:" + str(k + 1))
962
-
963
- hidden_states = self.ln_f(hidden_states)
964
-
965
- hidden_states = hidden_states.view(output_shape)
966
- # Add last hidden state
967
- if output_hidden_states:
968
- all_hidden_states = all_hidden_states + (hidden_states,)
969
-
970
- if not return_dict:
971
- return tuple(
972
- v
973
- for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
974
- if v is not None
975
- )
976
-
977
- return BaseModelOutputWithPastAndCrossAttentions(
978
- last_hidden_state=hidden_states,
979
- past_key_values=presents,
980
- hidden_states=all_hidden_states,
981
- attentions=all_self_attentions,
982
- cross_attentions=all_cross_attentions,
983
- )
984
-
985
-
986
- @add_start_docstrings(
987
- """
988
- The JAIS Model transformer with a language modeling head on top (linear layer with weights tied to the input
989
- embeddings).
990
- """,
991
- JAIS_START_DOCSTRING,
992
- )
993
- class JAISLMHeadModel(JAISPreTrainedModel):
994
- _keys_to_ignore_on_load_missing = [r"lm_head.weight"]
995
- _keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.masked_bias", r"h\.\d+\.attn\.bias"]
996
-
997
- def __init__(self, config):
998
- super().__init__(config)
999
- self.transformer = JAISModel(config)
1000
- self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
1001
- self.output_logits_scale = config.width_scale
1002
-
1003
- # Model parallel
1004
- self.model_parallel = False
1005
- self.device_map = None
1006
-
1007
- # Initialize weights and apply final processing
1008
- self.post_init()
1009
-
1010
- @add_start_docstrings(PARALLELIZE_DOCSTRING)
1011
- def parallelize(self, device_map=None):
1012
- warnings.warn(
1013
- "`JAISLMHeadModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load"
1014
- " your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
1015
- " `device_map` but it needs to be a dictionary module_name to device, so for instance {'transformer.h.0':"
1016
- " 0, 'transformer.h.1': 1, ...}",
1017
- FutureWarning,
1018
- )
1019
- self.device_map = (
1020
- get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
1021
- if device_map is None
1022
- else device_map
1023
- )
1024
- assert_device_map(self.device_map, len(self.transformer.h))
1025
- self.transformer.parallelize(self.device_map)
1026
- self.lm_head = self.lm_head.to(self.transformer.first_device)
1027
- self.model_parallel = True
1028
-
1029
- @add_start_docstrings(DEPARALLELIZE_DOCSTRING)
1030
- def deparallelize(self):
1031
- warnings.warn(
1032
- "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
1033
- FutureWarning,
1034
- )
1035
- self.transformer.deparallelize()
1036
- self.transformer = self.transformer.to("cpu")
1037
- self.lm_head = self.lm_head.to("cpu")
1038
- self.model_parallel = False
1039
- torch.cuda.empty_cache()
1040
-
1041
- def get_output_embeddings(self):
1042
- return self.lm_head
1043
-
1044
- def set_output_embeddings(self, new_embeddings):
1045
- self.lm_head = new_embeddings
1046
-
1047
- def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
1048
- token_type_ids = kwargs.get("token_type_ids", None)
1049
- # only last token for inputs_ids if past is defined in kwargs
1050
- if past_key_values:
1051
- input_ids = input_ids[:, -1].unsqueeze(-1)
1052
- if token_type_ids is not None:
1053
- token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
1054
-
1055
- attention_mask = kwargs.get("attention_mask", None)
1056
- position_ids = kwargs.get("position_ids", None)
1057
-
1058
- if attention_mask is not None and position_ids is None:
1059
- # create position_ids on the fly for batch generation
1060
- position_ids = attention_mask.long().cumsum(-1) - 1
1061
- position_ids.masked_fill_(attention_mask == 0, 1)
1062
- if past_key_values:
1063
- position_ids = position_ids[:, -1].unsqueeze(-1)
1064
- else:
1065
- position_ids = None
1066
-
1067
- # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1068
- if inputs_embeds is not None and past_key_values is None:
1069
- model_inputs = {"inputs_embeds": inputs_embeds}
1070
- else:
1071
- model_inputs = {"input_ids": input_ids}
1072
-
1073
- model_inputs.update(
1074
- {
1075
- "past_key_values": past_key_values,
1076
- "use_cache": kwargs.get("use_cache"),
1077
- "position_ids": position_ids,
1078
- "attention_mask": attention_mask,
1079
- "token_type_ids": token_type_ids,
1080
- }
1081
- )
1082
- return model_inputs
1083
-
1084
- @add_start_docstrings_to_model_forward(JAIS_INPUTS_DOCSTRING)
1085
- @add_code_sample_docstrings(
1086
- checkpoint=_CHECKPOINT_FOR_DOC,
1087
- output_type=CausalLMOutputWithCrossAttentions,
1088
- config_class=_CONFIG_FOR_DOC,
1089
- )
1090
- def forward(
1091
- self,
1092
- input_ids: Optional[torch.LongTensor] = None,
1093
- past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
1094
- attention_mask: Optional[torch.FloatTensor] = None,
1095
- token_type_ids: Optional[torch.LongTensor] = None,
1096
- position_ids: Optional[torch.LongTensor] = None,
1097
- head_mask: Optional[torch.FloatTensor] = None,
1098
- inputs_embeds: Optional[torch.FloatTensor] = None,
1099
- encoder_hidden_states: Optional[torch.Tensor] = None,
1100
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
1101
- labels: Optional[torch.LongTensor] = None,
1102
- use_cache: Optional[bool] = None,
1103
- output_attentions: Optional[bool] = None,
1104
- output_hidden_states: Optional[bool] = None,
1105
- return_dict: Optional[bool] = None,
1106
- ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
1107
- r"""
1108
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1109
- Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
1110
- `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
1111
- are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
1112
- """
1113
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1114
-
1115
- transformer_outputs = self.transformer(
1116
- input_ids,
1117
- past_key_values=past_key_values,
1118
- attention_mask=attention_mask,
1119
- token_type_ids=token_type_ids,
1120
- position_ids=position_ids,
1121
- head_mask=head_mask,
1122
- inputs_embeds=inputs_embeds,
1123
- encoder_hidden_states=encoder_hidden_states,
1124
- encoder_attention_mask=encoder_attention_mask,
1125
- use_cache=use_cache,
1126
- output_attentions=output_attentions,
1127
- output_hidden_states=output_hidden_states,
1128
- return_dict=return_dict,
1129
- )
1130
- hidden_states = transformer_outputs[0]
1131
-
1132
- # Set device for model parallelism
1133
- if self.model_parallel:
1134
- torch.cuda.set_device(self.transformer.first_device)
1135
- hidden_states = hidden_states.to(self.lm_head.weight.device)
1136
-
1137
- lm_logits = self.lm_head(hidden_states)
1138
- lm_logits *= torch.tensor(
1139
- float(self.output_logits_scale), dtype=lm_logits.dtype, device=lm_logits.device
1140
- )
1141
-
1142
- loss = None
1143
- if labels is not None:
1144
- # move labels to correct device to enable model parallelism
1145
- labels = labels.to(lm_logits.device)
1146
- # Shift so that tokens < n predict n
1147
- shift_logits = lm_logits[..., :-1, :].contiguous()
1148
- shift_labels = labels[..., 1:].contiguous()
1149
- # Flatten the tokens
1150
- loss_fct = CrossEntropyLoss()
1151
- loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
1152
-
1153
- if not return_dict:
1154
- output = (lm_logits,) + transformer_outputs[1:]
1155
- return ((loss,) + output) if loss is not None else output
1156
-
1157
- return CausalLMOutputWithCrossAttentions(
1158
- loss=loss,
1159
- logits=lm_logits,
1160
- past_key_values=transformer_outputs.past_key_values,
1161
- hidden_states=transformer_outputs.hidden_states,
1162
- attentions=transformer_outputs.attentions,
1163
- cross_attentions=transformer_outputs.cross_attentions,
1164
- )
1165
-
1166
- @staticmethod
1167
- def _reorder_cache(
1168
- past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
1169
- ) -> Tuple[Tuple[torch.Tensor]]:
1170
- """
1171
- This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
1172
- [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
1173
- beam_idx at every generation step.
1174
- """
1175
- return tuple(
1176
- tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
1177
- for layer_past in past_key_values
1178
- )
1179
-
1180
-
1181
- @add_start_docstrings(
1182
- """
1183
- The JAIS Model transformer with a sequence classification head on top (linear layer).
1184
-
1185
- [`JAISForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1186
- (e.g. GPT-1) do.
1187
-
1188
- Since it does classification on the last token, it requires to know the position of the last token. If a
1189
- `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1190
- no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1191
- padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1192
- each row of the batch).
1193
- """,
1194
- JAIS_START_DOCSTRING,
1195
- )
1196
- class JAISForSequenceClassification(JAISPreTrainedModel):
1197
- _keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"]
1198
- _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"lm_head.weight"]
1199
-
1200
- def __init__(self, config):
1201
- super().__init__(config)
1202
- self.num_labels = config.num_labels
1203
- self.transformer = JAISModel(config)
1204
- self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
1205
- self.output_logits_scale = config.width_scale
1206
-
1207
- # Model parallel
1208
- self.model_parallel = False
1209
- self.device_map = None
1210
-
1211
- # Initialize weights and apply final processing
1212
- self.post_init()
1213
-
1214
- @add_start_docstrings_to_model_forward(JAIS_INPUTS_DOCSTRING)
1215
- @add_code_sample_docstrings(
1216
- checkpoint="microsoft/DialogRPT-updown",
1217
- output_type=SequenceClassifierOutputWithPast,
1218
- config_class=_CONFIG_FOR_DOC,
1219
- )
1220
- def forward(
1221
- self,
1222
- input_ids: Optional[torch.LongTensor] = None,
1223
- past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
1224
- attention_mask: Optional[torch.FloatTensor] = None,
1225
- token_type_ids: Optional[torch.LongTensor] = None,
1226
- position_ids: Optional[torch.LongTensor] = None,
1227
- head_mask: Optional[torch.FloatTensor] = None,
1228
- inputs_embeds: Optional[torch.FloatTensor] = None,
1229
- labels: Optional[torch.LongTensor] = None,
1230
- use_cache: Optional[bool] = None,
1231
- output_attentions: Optional[bool] = None,
1232
- output_hidden_states: Optional[bool] = None,
1233
- return_dict: Optional[bool] = None,
1234
- ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1235
- r"""
1236
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1237
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1238
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1239
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1240
- """
1241
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1242
-
1243
- transformer_outputs = self.transformer(
1244
- input_ids,
1245
- past_key_values=past_key_values,
1246
- attention_mask=attention_mask,
1247
- token_type_ids=token_type_ids,
1248
- position_ids=position_ids,
1249
- head_mask=head_mask,
1250
- inputs_embeds=inputs_embeds,
1251
- use_cache=use_cache,
1252
- output_attentions=output_attentions,
1253
- output_hidden_states=output_hidden_states,
1254
- return_dict=return_dict,
1255
- )
1256
- hidden_states = transformer_outputs[0]
1257
- logits = self.score(hidden_states)
1258
- logits *= torch.tensor(
1259
- float(self.output_logits_scale), dtype=logits.dtype, device=logits.device
1260
- )
1261
-
1262
- if input_ids is not None:
1263
- batch_size, sequence_length = input_ids.shape[:2]
1264
- else:
1265
- batch_size, sequence_length = inputs_embeds.shape[:2]
1266
-
1267
- assert (
1268
- self.config.pad_token_id is not None or batch_size == 1
1269
- ), "Cannot handle batch sizes > 1 if no padding token is defined."
1270
- if self.config.pad_token_id is None:
1271
- sequence_lengths = -1
1272
- else:
1273
- if input_ids is not None:
1274
- sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
1275
- else:
1276
- sequence_lengths = -1
1277
- logger.warning(
1278
- f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
1279
- "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
1280
- )
1281
-
1282
- pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1283
-
1284
- loss = None
1285
- if labels is not None:
1286
- if self.config.problem_type is None:
1287
- if self.num_labels == 1:
1288
- self.config.problem_type = "regression"
1289
- elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1290
- self.config.problem_type = "single_label_classification"
1291
- else:
1292
- self.config.problem_type = "multi_label_classification"
1293
-
1294
- if self.config.problem_type == "regression":
1295
- loss_fct = MSELoss()
1296
- if self.num_labels == 1:
1297
- loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1298
- else:
1299
- loss = loss_fct(pooled_logits, labels)
1300
- elif self.config.problem_type == "single_label_classification":
1301
- loss_fct = CrossEntropyLoss()
1302
- loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1303
- elif self.config.problem_type == "multi_label_classification":
1304
- loss_fct = BCEWithLogitsLoss()
1305
- loss = loss_fct(pooled_logits, labels)
1306
- if not return_dict:
1307
- output = (pooled_logits,) + transformer_outputs[1:]
1308
- return ((loss,) + output) if loss is not None else output
1309
-
1310
- return SequenceClassifierOutputWithPast(
1311
- loss=loss,
1312
- logits=pooled_logits,
1313
- past_key_values=transformer_outputs.past_key_values,
1314
- hidden_states=transformer_outputs.hidden_states,
1315
- attentions=transformer_outputs.attentions,
1316
- )
1317
-
1318
-
1319
- @add_start_docstrings(
1320
- """
1321
- JAIS Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
1322
- Named-Entity-Recognition (NER) tasks.
1323
- """,
1324
- JAIS_START_DOCSTRING,
1325
- )
1326
- class JAISForTokenClassification(JAISPreTrainedModel):
1327
- def __init__(self, config):
1328
- super().__init__(config)
1329
- self.num_labels = config.num_labels
1330
-
1331
- self.transformer = JAISModel(config)
1332
- if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
1333
- classifier_dropout = config.classifier_dropout
1334
- elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
1335
- classifier_dropout = config.hidden_dropout
1336
- else:
1337
- classifier_dropout = 0.1
1338
- self.dropout = nn.Dropout(classifier_dropout)
1339
- self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1340
- self.output_logits_scale = config.width_scale
1341
-
1342
- # Model parallel
1343
- self.model_parallel = False
1344
- self.device_map = None
1345
-
1346
- # Initialize weights and apply final processing
1347
- self.post_init()
1348
-
1349
- @add_start_docstrings_to_model_forward(JAIS_INPUTS_DOCSTRING)
1350
- # fmt: off
1351
- @add_code_sample_docstrings(
1352
- checkpoint="brad1141/gpt2-finetuned-comp2",
1353
- output_type=TokenClassifierOutput,
1354
- config_class=_CONFIG_FOR_DOC,
1355
- expected_loss=0.25,
1356
- expected_output=["Lead", "Lead", "Lead", "Position", "Lead", "Lead", "Lead", "Lead", "Lead", "Lead", "Lead", "Lead"],
1357
- )
1358
- # fmt: on
1359
- def forward(
1360
- self,
1361
- input_ids: Optional[torch.LongTensor] = None,
1362
- past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
1363
- attention_mask: Optional[torch.FloatTensor] = None,
1364
- token_type_ids: Optional[torch.LongTensor] = None,
1365
- position_ids: Optional[torch.LongTensor] = None,
1366
- head_mask: Optional[torch.FloatTensor] = None,
1367
- inputs_embeds: Optional[torch.FloatTensor] = None,
1368
- labels: Optional[torch.LongTensor] = None,
1369
- use_cache: Optional[bool] = None,
1370
- output_attentions: Optional[bool] = None,
1371
- output_hidden_states: Optional[bool] = None,
1372
- return_dict: Optional[bool] = None,
1373
- ) -> Union[Tuple, TokenClassifierOutput]:
1374
- r"""
1375
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1376
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1377
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1378
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1379
- """
1380
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1381
-
1382
- transformer_outputs = self.transformer(
1383
- input_ids,
1384
- past_key_values=past_key_values,
1385
- attention_mask=attention_mask,
1386
- token_type_ids=token_type_ids,
1387
- position_ids=position_ids,
1388
- head_mask=head_mask,
1389
- inputs_embeds=inputs_embeds,
1390
- use_cache=use_cache,
1391
- output_attentions=output_attentions,
1392
- output_hidden_states=output_hidden_states,
1393
- return_dict=return_dict,
1394
- )
1395
-
1396
- hidden_states = transformer_outputs[0]
1397
- hidden_states = self.dropout(hidden_states)
1398
- logits = self.classifier(hidden_states)
1399
- logits *= torch.tensor(
1400
- float(self.output_logits_scale), dtype=logits.dtype, device=logits.device
1401
- )
1402
-
1403
- loss = None
1404
- if labels is not None:
1405
- labels = labels.to(logits.device)
1406
- loss_fct = CrossEntropyLoss()
1407
- loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1408
-
1409
- if not return_dict:
1410
- output = (logits,) + transformer_outputs[2:]
1411
- return ((loss,) + output) if loss is not None else output
1412
-
1413
- return TokenClassifierOutput(
1414
- loss=loss,
1415
- logits=logits,
1416
- hidden_states=transformer_outputs.hidden_states,
1417
- attentions=transformer_outputs.attentions,
1418
- )
1419
-
1420
-
1421
- @add_start_docstrings(
1422
- """
1423
- The JAIS Model transformer with a span classification head on top for extractive question-answering tasks like
1424
- SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
1425
- """,
1426
- JAIS_START_DOCSTRING,
1427
- )
1428
- class JAISForQuestionAnswering(JAISPreTrainedModel):
1429
- _keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"]
1430
- _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"h\.\d+\.attn\.bias", r"lm_head.weight"]
1431
-
1432
- def __init__(self, config):
1433
- super().__init__(config)
1434
- self.num_labels = config.num_labels
1435
- self.transformer = JAISModel(config)
1436
- self.qa_outputs = nn.Linear(config.hidden_size, 2)
1437
- self.output_logits_scale = config.width_scale
1438
-
1439
- # Model parallel
1440
- self.model_parallel = False
1441
- self.device_map = None
1442
- self.gradient_checkpointing = False
1443
-
1444
- # Initialize weights and apply final processing
1445
- self.post_init()
1446
-
1447
- def forward(
1448
- self,
1449
- input_ids: Optional[torch.LongTensor] = None,
1450
- attention_mask: Optional[torch.FloatTensor] = None,
1451
- token_type_ids: Optional[torch.LongTensor] = None,
1452
- position_ids: Optional[torch.LongTensor] = None,
1453
- head_mask: Optional[torch.FloatTensor] = None,
1454
- inputs_embeds: Optional[torch.FloatTensor] = None,
1455
- start_positions: Optional[torch.LongTensor] = None,
1456
- end_positions: Optional[torch.LongTensor] = None,
1457
- output_attentions: Optional[bool] = None,
1458
- output_hidden_states: Optional[bool] = None,
1459
- return_dict: Optional[bool] = None,
1460
- ) -> Union[Tuple, QuestionAnsweringModelOutput]:
1461
- r"""
1462
- start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1463
- Labels for position (index) of the start of the labelled span for computing the token classification loss.
1464
- Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1465
- are not taken into account for computing the loss.
1466
- end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1467
- Labels for position (index) of the end of the labelled span for computing the token classification loss.
1468
- Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1469
- are not taken into account for computing the loss.
1470
- """
1471
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1472
-
1473
- outputs = self.transformer(
1474
- input_ids,
1475
- attention_mask=attention_mask,
1476
- token_type_ids=token_type_ids,
1477
- position_ids=position_ids,
1478
- head_mask=head_mask,
1479
- inputs_embeds=inputs_embeds,
1480
- output_attentions=output_attentions,
1481
- output_hidden_states=output_hidden_states,
1482
- return_dict=return_dict,
1483
- )
1484
-
1485
- sequence_output = outputs[0]
1486
-
1487
- logits = self.qa_outputs(sequence_output)
1488
- logits *= torch.tensor(
1489
- float(self.output_logits_scale), dtype=logits.dtype, device=logits.device
1490
- )
1491
- start_logits, end_logits = logits.split(1, dim=-1)
1492
- start_logits = start_logits.squeeze(-1).contiguous()
1493
- end_logits = end_logits.squeeze(-1).contiguous()
1494
-
1495
- total_loss = None
1496
- if start_positions is not None and end_positions is not None:
1497
- # If we are on multi-GPU, split add a dimension
1498
- if len(start_positions.size()) > 1:
1499
- start_positions = start_positions.squeeze(-1).to(start_logits.device)
1500
- if len(end_positions.size()) > 1:
1501
- end_positions = end_positions.squeeze(-1).to(end_logits.device)
1502
- # sometimes the start/end positions are outside our model inputs, we ignore these terms
1503
- ignored_index = start_logits.size(1)
1504
- start_positions = start_positions.clamp(0, ignored_index)
1505
- end_positions = end_positions.clamp(0, ignored_index)
1506
-
1507
- loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
1508
- start_loss = loss_fct(start_logits, start_positions)
1509
- end_loss = loss_fct(end_logits, end_positions)
1510
- total_loss = (start_loss + end_loss) / 2
1511
-
1512
- if not return_dict:
1513
- output = (start_logits, end_logits) + outputs[2:]
1514
- return ((total_loss,) + output) if total_loss is not None else output
1515
-
1516
- return QuestionAnsweringModelOutput(
1517
- loss=total_loss,
1518
- start_logits=start_logits,
1519
- end_logits=end_logits,
1520
- hidden_states=outputs.hidden_states,
1521
- attentions=outputs.attentions,
1522
- )