|
import argparse, os, sys, glob |
|
from omegaconf import OmegaConf |
|
from PIL import Image |
|
from tqdm import tqdm |
|
import numpy as np |
|
import torch |
|
from main import instantiate_from_config |
|
from ldm.models.diffusion.ddim import DDIMSampler |
|
|
|
|
|
def make_batch(image, mask, device): |
|
image = np.array(Image.open(image).convert("RGB")) |
|
image = image.astype(np.float32)/255.0 |
|
image = image[None].transpose(0,3,1,2) |
|
image = torch.from_numpy(image) |
|
|
|
mask = np.array(Image.open(mask).convert("L")) |
|
mask = mask.astype(np.float32)/255.0 |
|
mask = mask[None,None] |
|
mask[mask < 0.5] = 0 |
|
mask[mask >= 0.5] = 1 |
|
mask = torch.from_numpy(mask) |
|
|
|
masked_image = (1-mask)*image |
|
|
|
batch = {"image": image, "mask": mask, "masked_image": masked_image} |
|
for k in batch: |
|
batch[k] = batch[k].to(device=device) |
|
batch[k] = batch[k]*2.0-1.0 |
|
return batch |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"--indir", |
|
type=str, |
|
nargs="?", |
|
help="dir containing image-mask pairs (`example.png` and `example_mask.png`)", |
|
) |
|
parser.add_argument( |
|
"--outdir", |
|
type=str, |
|
nargs="?", |
|
help="dir to write results to", |
|
) |
|
parser.add_argument( |
|
"--steps", |
|
type=int, |
|
default=50, |
|
help="number of ddim sampling steps", |
|
) |
|
opt = parser.parse_args() |
|
|
|
masks = sorted(glob.glob(os.path.join(opt.indir, "*_mask.png"))) |
|
images = [x.replace("_mask.png", ".png") for x in masks] |
|
print(f"Found {len(masks)} inputs.") |
|
|
|
config = OmegaConf.load("models/ldm/inpainting_big/config.yaml") |
|
model = instantiate_from_config(config.model) |
|
model.load_state_dict(torch.load("models/ldm/inpainting_big/last.ckpt")["state_dict"], |
|
strict=False) |
|
|
|
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") |
|
model = model.to(device) |
|
sampler = DDIMSampler(model) |
|
|
|
os.makedirs(opt.outdir, exist_ok=True) |
|
with torch.no_grad(): |
|
with model.ema_scope(): |
|
for image, mask in tqdm(zip(images, masks)): |
|
outpath = os.path.join(opt.outdir, os.path.split(image)[1]) |
|
batch = make_batch(image, mask, device=device) |
|
|
|
|
|
c = model.cond_stage_model.encode(batch["masked_image"]) |
|
cc = torch.nn.functional.interpolate(batch["mask"], |
|
size=c.shape[-2:]) |
|
c = torch.cat((c, cc), dim=1) |
|
|
|
shape = (c.shape[1]-1,)+c.shape[2:] |
|
samples_ddim, _ = sampler.sample(S=opt.steps, |
|
conditioning=c, |
|
batch_size=c.shape[0], |
|
shape=shape, |
|
verbose=False) |
|
x_samples_ddim = model.decode_first_stage(samples_ddim) |
|
|
|
image = torch.clamp((batch["image"]+1.0)/2.0, |
|
min=0.0, max=1.0) |
|
mask = torch.clamp((batch["mask"]+1.0)/2.0, |
|
min=0.0, max=1.0) |
|
predicted_image = torch.clamp((x_samples_ddim+1.0)/2.0, |
|
min=0.0, max=1.0) |
|
|
|
inpainted = (1-mask)*image+mask*predicted_image |
|
inpainted = inpainted.cpu().numpy().transpose(0,2,3,1)[0]*255 |
|
Image.fromarray(inpainted.astype(np.uint8)).save(outpath) |
|
|