|
import argparse, os, sys, glob, datetime, yaml |
|
import torch |
|
import time |
|
import numpy as np |
|
from tqdm import trange |
|
|
|
from omegaconf import OmegaConf |
|
from PIL import Image |
|
|
|
from ldm.models.diffusion.ddim import DDIMSampler |
|
from ldm.util import instantiate_from_config |
|
|
|
rescale = lambda x: (x + 1.) / 2. |
|
|
|
def custom_to_pil(x): |
|
x = x.detach().cpu() |
|
x = torch.clamp(x, -1., 1.) |
|
x = (x + 1.) / 2. |
|
x = x.permute(1, 2, 0).numpy() |
|
x = (255 * x).astype(np.uint8) |
|
x = Image.fromarray(x) |
|
if not x.mode == "RGB": |
|
x = x.convert("RGB") |
|
return x |
|
|
|
|
|
def custom_to_np(x): |
|
|
|
sample = x.detach().cpu() |
|
sample = ((sample + 1) * 127.5).clamp(0, 255).to(torch.uint8) |
|
sample = sample.permute(0, 2, 3, 1) |
|
sample = sample.contiguous() |
|
return sample |
|
|
|
|
|
def logs2pil(logs, keys=["sample"]): |
|
imgs = dict() |
|
for k in logs: |
|
try: |
|
if len(logs[k].shape) == 4: |
|
img = custom_to_pil(logs[k][0, ...]) |
|
elif len(logs[k].shape) == 3: |
|
img = custom_to_pil(logs[k]) |
|
else: |
|
print(f"Unknown format for key {k}. ") |
|
img = None |
|
except: |
|
img = None |
|
imgs[k] = img |
|
return imgs |
|
|
|
|
|
@torch.no_grad() |
|
def convsample(model, shape, return_intermediates=True, |
|
verbose=True, |
|
make_prog_row=False): |
|
|
|
|
|
if not make_prog_row: |
|
return model.p_sample_loop(None, shape, |
|
return_intermediates=return_intermediates, verbose=verbose) |
|
else: |
|
return model.progressive_denoising( |
|
None, shape, verbose=True |
|
) |
|
|
|
|
|
@torch.no_grad() |
|
def convsample_ddim(model, steps, shape, eta=1.0 |
|
): |
|
ddim = DDIMSampler(model) |
|
bs = shape[0] |
|
shape = shape[1:] |
|
samples, intermediates = ddim.sample(steps, batch_size=bs, shape=shape, eta=eta, verbose=False,) |
|
return samples, intermediates |
|
|
|
|
|
@torch.no_grad() |
|
def make_convolutional_sample(model, batch_size, vanilla=False, custom_steps=None, eta=1.0,): |
|
|
|
|
|
log = dict() |
|
|
|
shape = [batch_size, |
|
model.model.diffusion_model.in_channels, |
|
model.model.diffusion_model.image_size, |
|
model.model.diffusion_model.image_size] |
|
|
|
with model.ema_scope("Plotting"): |
|
t0 = time.time() |
|
if vanilla: |
|
sample, progrow = convsample(model, shape, |
|
make_prog_row=True) |
|
else: |
|
sample, intermediates = convsample_ddim(model, steps=custom_steps, shape=shape, |
|
eta=eta) |
|
|
|
t1 = time.time() |
|
|
|
x_sample = model.decode_first_stage(sample) |
|
|
|
log["sample"] = x_sample |
|
log["time"] = t1 - t0 |
|
log['throughput'] = sample.shape[0] / (t1 - t0) |
|
print(f'Throughput for this batch: {log["throughput"]}') |
|
return log |
|
|
|
def run(model, logdir, batch_size=50, vanilla=False, custom_steps=None, eta=None, n_samples=50000, nplog=None): |
|
if vanilla: |
|
print(f'Using Vanilla DDPM sampling with {model.num_timesteps} sampling steps.') |
|
else: |
|
print(f'Using DDIM sampling with {custom_steps} sampling steps and eta={eta}') |
|
|
|
|
|
tstart = time.time() |
|
n_saved = len(glob.glob(os.path.join(logdir,'*.png')))-1 |
|
|
|
if model.cond_stage_model is None: |
|
all_images = [] |
|
|
|
print(f"Running unconditional sampling for {n_samples} samples") |
|
for _ in trange(n_samples // batch_size, desc="Sampling Batches (unconditional)"): |
|
logs = make_convolutional_sample(model, batch_size=batch_size, |
|
vanilla=vanilla, custom_steps=custom_steps, |
|
eta=eta) |
|
n_saved = save_logs(logs, logdir, n_saved=n_saved, key="sample") |
|
all_images.extend([custom_to_np(logs["sample"])]) |
|
if n_saved >= n_samples: |
|
print(f'Finish after generating {n_saved} samples') |
|
break |
|
all_img = np.concatenate(all_images, axis=0) |
|
all_img = all_img[:n_samples] |
|
shape_str = "x".join([str(x) for x in all_img.shape]) |
|
nppath = os.path.join(nplog, f"{shape_str}-samples.npz") |
|
np.savez(nppath, all_img) |
|
|
|
else: |
|
raise NotImplementedError('Currently only sampling for unconditional models supported.') |
|
|
|
print(f"sampling of {n_saved} images finished in {(time.time() - tstart) / 60.:.2f} minutes.") |
|
|
|
|
|
def save_logs(logs, path, n_saved=0, key="sample", np_path=None): |
|
for k in logs: |
|
if k == key: |
|
batch = logs[key] |
|
if np_path is None: |
|
for x in batch: |
|
img = custom_to_pil(x) |
|
imgpath = os.path.join(path, f"{key}_{n_saved:06}.png") |
|
img.save(imgpath) |
|
n_saved += 1 |
|
else: |
|
npbatch = custom_to_np(batch) |
|
shape_str = "x".join([str(x) for x in npbatch.shape]) |
|
nppath = os.path.join(np_path, f"{n_saved}-{shape_str}-samples.npz") |
|
np.savez(nppath, npbatch) |
|
n_saved += npbatch.shape[0] |
|
return n_saved |
|
|
|
|
|
def get_parser(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"-r", |
|
"--resume", |
|
type=str, |
|
nargs="?", |
|
help="load from logdir or checkpoint in logdir", |
|
) |
|
parser.add_argument( |
|
"-n", |
|
"--n_samples", |
|
type=int, |
|
nargs="?", |
|
help="number of samples to draw", |
|
default=50000 |
|
) |
|
parser.add_argument( |
|
"-e", |
|
"--eta", |
|
type=float, |
|
nargs="?", |
|
help="eta for ddim sampling (0.0 yields deterministic sampling)", |
|
default=1.0 |
|
) |
|
parser.add_argument( |
|
"-v", |
|
"--vanilla_sample", |
|
default=False, |
|
action='store_true', |
|
help="vanilla sampling (default option is DDIM sampling)?", |
|
) |
|
parser.add_argument( |
|
"-l", |
|
"--logdir", |
|
type=str, |
|
nargs="?", |
|
help="extra logdir", |
|
default="none" |
|
) |
|
parser.add_argument( |
|
"-c", |
|
"--custom_steps", |
|
type=int, |
|
nargs="?", |
|
help="number of steps for ddim and fastdpm sampling", |
|
default=50 |
|
) |
|
parser.add_argument( |
|
"--batch_size", |
|
type=int, |
|
nargs="?", |
|
help="the bs", |
|
default=10 |
|
) |
|
return parser |
|
|
|
|
|
def load_model_from_config(config, sd): |
|
model = instantiate_from_config(config) |
|
model.load_state_dict(sd,strict=False) |
|
model.cuda() |
|
model.eval() |
|
return model |
|
|
|
|
|
def load_model(config, ckpt, gpu, eval_mode): |
|
if ckpt: |
|
print(f"Loading model from {ckpt}") |
|
pl_sd = torch.load(ckpt, map_location="cpu") |
|
global_step = pl_sd["global_step"] |
|
else: |
|
pl_sd = {"state_dict": None} |
|
global_step = None |
|
model = load_model_from_config(config.model, |
|
pl_sd["state_dict"]) |
|
|
|
return model, global_step |
|
|
|
|
|
if __name__ == "__main__": |
|
now = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S") |
|
sys.path.append(os.getcwd()) |
|
command = " ".join(sys.argv) |
|
|
|
parser = get_parser() |
|
opt, unknown = parser.parse_known_args() |
|
ckpt = None |
|
|
|
if not os.path.exists(opt.resume): |
|
raise ValueError("Cannot find {}".format(opt.resume)) |
|
if os.path.isfile(opt.resume): |
|
|
|
try: |
|
logdir = '/'.join(opt.resume.split('/')[:-1]) |
|
|
|
print(f'Logdir is {logdir}') |
|
except ValueError: |
|
paths = opt.resume.split("/") |
|
idx = -2 |
|
logdir = "/".join(paths[:idx]) |
|
ckpt = opt.resume |
|
else: |
|
assert os.path.isdir(opt.resume), f"{opt.resume} is not a directory" |
|
logdir = opt.resume.rstrip("/") |
|
ckpt = os.path.join(logdir, "model.ckpt") |
|
|
|
base_configs = sorted(glob.glob(os.path.join(logdir, "config.yaml"))) |
|
opt.base = base_configs |
|
|
|
configs = [OmegaConf.load(cfg) for cfg in opt.base] |
|
cli = OmegaConf.from_dotlist(unknown) |
|
config = OmegaConf.merge(*configs, cli) |
|
|
|
gpu = True |
|
eval_mode = True |
|
|
|
if opt.logdir != "none": |
|
locallog = logdir.split(os.sep)[-1] |
|
if locallog == "": locallog = logdir.split(os.sep)[-2] |
|
print(f"Switching logdir from '{logdir}' to '{os.path.join(opt.logdir, locallog)}'") |
|
logdir = os.path.join(opt.logdir, locallog) |
|
|
|
print(config) |
|
|
|
model, global_step = load_model(config, ckpt, gpu, eval_mode) |
|
print(f"global step: {global_step}") |
|
print(75 * "=") |
|
print("logging to:") |
|
logdir = os.path.join(logdir, "samples", f"{global_step:08}", now) |
|
imglogdir = os.path.join(logdir, "img") |
|
numpylogdir = os.path.join(logdir, "numpy") |
|
|
|
os.makedirs(imglogdir) |
|
os.makedirs(numpylogdir) |
|
print(logdir) |
|
print(75 * "=") |
|
|
|
|
|
sampling_file = os.path.join(logdir, "sampling_config.yaml") |
|
sampling_conf = vars(opt) |
|
|
|
with open(sampling_file, 'w') as f: |
|
yaml.dump(sampling_conf, f, default_flow_style=False) |
|
print(sampling_conf) |
|
|
|
|
|
run(model, imglogdir, eta=opt.eta, |
|
vanilla=opt.vanilla_sample, n_samples=opt.n_samples, custom_steps=opt.custom_steps, |
|
batch_size=opt.batch_size, nplog=numpylogdir) |
|
|
|
print("done.") |
|
|