File size: 11,928 Bytes
3b6aeff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c9f169
3b6aeff
 
4c9f169
3b6aeff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c9f169
3b6aeff
 
 
4c9f169
3b6aeff
 
 
 
4c9f169
 
3b6aeff
4c9f169
3b6aeff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c9f169
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for MiniCPMV.
"""

from typing import List, Optional, Union, Dict, Any
import torch
import re

from transformers.image_processing_utils import BatchFeature
from transformers.image_utils import ImageInput
from transformers.processing_utils import ProcessorMixin
from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from transformers.utils import TensorType, requires_backends, is_torch_dtype, is_torch_device

from .image_processing_minicpmv import MiniCPMVBatchFeature


class MiniCPMVProcessor(ProcessorMixin):
    r"""
    Constructs a MiniCPMV processor which wraps a MiniCPMV image processor and a MiniCPMV tokenizer into a single processor.

    [`MiniCPMVProcessor`] offers all the functionalities of [`MiniCPMVImageProcessor`] and [`LlamaTokenizerWrapper`]. See the
    [`~MiniCPMVProcessor.__call__`] and [`~MiniCPMVProcessor.decode`] for more information.

    Args:
        image_processor ([`MiniCPMVImageProcessor`], *optional*):
            The image processor is a required input.
        tokenizer ([`LlamaTokenizerWrapper`], *optional*):
            The tokenizer is a required input.
    """
    attributes = ["image_processor", "tokenizer"]
    image_processor_class = "AutoImageProcessor"
    tokenizer_class = "AutoTokenizer"

    def __init__(self, image_processor=None, tokenizer=None):
        super().__init__(image_processor, tokenizer)
        self.version = image_processor.version
    
    def __call__(
        self,
        text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
        images: ImageInput = None,
        padding: Union[bool, str, PaddingStrategy] = False,
        truncation: Union[bool, str, TruncationStrategy] = None,
        max_length: Optional[int] = None,
        do_pad: Optional[bool] = True,
        return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
    ) -> MiniCPMVBatchFeature:
        """
        Only support for single input for now. Batched input is coming soon.

        Args:
            text (`str`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. Both channels-first and channels-last formats are supported.
            padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
                Select a strategy to pad the returned sequences (according to the model's padding side and padding
                index) among:
                - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
                  sequence if provided).
                - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
                  acceptable input length for the model if that argument is not provided.
                - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
                  lengths).
            max_length (`int`, *optional*):
                Maximum length of the returned list and optionally padding length (see above).
            do_pad (`bool`, *optional*, defaults to self.do_pad):
                Whether to pad the image. If `True` will pad the images in the batch to the largest image in the batch
                and create a pixel mask. Padding will be applied to the bottom and right of the image with zeros.
            truncation (`bool`, *optional*):
                Activates truncation to cut input sequences longer than `max_length` to `max_length`.
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:

                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.
                - `'jax'`: Return JAX `jnp.ndarray` objects.

        Returns:
            [`BatchFeature`]: A [`BatchFeature`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
        """
        if images is not None:
            image_inputs = self.image_processor(images, do_pad=do_pad, return_tensors=return_tensors)
        return self._convert_images_texts_to_inputs(image_inputs, text, max_length=max_length)
    
    # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
    def batch_decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        """
        output_ids = args[0]
        result_text = []
        for result in output_ids:
            result = result[result != 0]
            if result[0] == self.tokenizer.bos_id:
                result = result[1:]
            if result[-1] == self.tokenizer.eos_id:
                result = result[:-1]
            result_text.append(self.tokenizer.decode(result, *args[1:], **kwargs).strip())
        return result_text
        # return self.tokenizer.batch_decode(*args, **kwargs)
    
    # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
    def decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        """
        result = args[0]
        result = result[result != 0]
        if result[0] == self.tokenizer.bos_id:
            result = result[1:]
        if result[-1] == self.tokenizer.eos_id or (hasattr(self.tokenizer, "eot_id") and result[-1] == self.tokenizer.eot_id):
            result = result[:-1]
        return self.tokenizer.decode(result, *args[1:], **kwargs).strip()

    def _convert(
        self, input_str, max_inp_length: Optional[int] = None
    ):
        if self.version == 2.5 or self.tokenizer.add_bos_token:
            input_ids = self.tokenizer.encode(input_str)
        else:
            input_ids = [self.tokenizer.bos_id] + self.tokenizer.encode(input_str)
        if max_inp_length is not None:
            input_ids = input_ids[:max_inp_length]
        input_ids = torch.tensor(input_ids, dtype=torch.int32)

        image_start_tokens = torch.where(input_ids == self.tokenizer.im_start_id)[0]
        image_start_tokens += 1
        image_end_tokens = torch.where(input_ids == self.tokenizer.im_end_id)[0]
        valid_image_nums = max(len(image_start_tokens), len(image_end_tokens))
        image_bounds = torch.hstack(
            [
                image_start_tokens[:valid_image_nums].unsqueeze(-1),
                image_end_tokens[:valid_image_nums].unsqueeze(-1),
            ]
        )
        return input_ids.unsqueeze(0), image_bounds

    def _convert_images_texts_to_inputs(self, images, texts, do_pad=False, truncation=None, max_length=None, return_tensors=None):
        if not len(images):
            model_inputs = self.tokenizer(texts, return_tensors=return_tensors, padding=do_pad, truncation=truncation, max_length=max_length)
            return MiniCPMVBatchFeature(data={**model_inputs})
        
        pattern = "(<image>./</image>)"
        images, image_sizes, tgt_sizes = images["pixel_values"], images["image_sizes"], images["tgt_sizes"]

        image_tags = re.findall(pattern, texts)
        assert len(image_tags) == len(image_sizes[0])
        text_chunks = texts.split(pattern)
        final_texts = ""
        for i in range(len(image_tags)):
            final_texts = final_texts + text_chunks[i] + self.image_processor.get_slice_image_placeholder(image_sizes[0][i])
        final_texts += text_chunks[-1]
        input_ids, image_bounds = self._convert(final_texts, max_length)
        return MiniCPMVBatchFeature(data={
            "input_ids": input_ids,
            "pixel_values": images,
            "image_sizes": image_sizes,
            "image_bound": [image_bounds],
            "tgt_sizes": tgt_sizes
        })

    @property
    # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
    def model_input_names(self):
        tokenizer_input_names = self.tokenizer.model_input_names
        image_processor_input_names = self.image_processor.model_input_names
        return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))


    def pad(self, orig_items, key, max_length=None, padding_value=0, padding_side="left"):
        items = []
        if isinstance(orig_items[0][key], list):
            assert isinstance(orig_items[0][key][0], torch.Tensor)
            for it in orig_items:
                for tr in it[key]:
                    items.append({key: tr})
        else:
            assert isinstance(orig_items[0][key], torch.Tensor)
            items = orig_items

        batch_size = len(items)
        shape = items[0][key].shape
        dim = len(shape)
        assert dim <= 3
        if max_length is None:
            max_length = 0
        max_length = max(max_length, max(item[key].shape[-1] for item in items))
        min_length = min(item[key].shape[-1] for item in items)
        dtype = items[0][key].dtype

        if dim == 1:
            return torch.cat([item[key] for item in items], dim=0)
        elif dim == 2:
            if max_length == min_length:
                return torch.cat([item[key] for item in items], dim=0)
            tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value
        else:
            tensor = (
                torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype)
                + padding_value
            )

        for i, item in enumerate(items):
            if dim == 2:
                if padding_side == "left":
                    tensor[i, -len(item[key][0]) :] = item[key][0].clone()
                else:
                    tensor[i, : len(item[key][0])] = item[key][0].clone()
            elif dim == 3:
                if padding_side == "left":
                    tensor[i, -len(item[key][0]) :, :] = item[key][0].clone()
                else:
                    tensor[i, : len(item[key][0]), :] = item[key][0].clone()

        return tensor