File size: 9,074 Bytes
fda92ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de9e1bb
3ce0a28
de9e1bb
 
 
 
3ce0a28
 
 
 
 
 
 
 
 
 
 
 
fda92ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ce0a28
fda92ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ce0a28
 
 
 
 
 
fda92ea
3ce0a28
fda92ea
 
 
3ce0a28
 
 
 
 
fda92ea
 
 
 
3ce0a28
 
fda92ea
 
 
 
 
 
 
 
 
3ce0a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fda92ea
 
 
 
 
 
 
 
 
3ce0a28
fda92ea
 
 
651ed08
fda92ea
 
 
 
 
3ce0a28
 
 
fda92ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ce0a28
 
fda92ea
 
 
3ce0a28
fda92ea
3ce0a28
fda92ea
651ed08
fda92ea
 
 
3ce0a28
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import math
from typing import List, Optional
import json
import timm
import torch
import torchvision
from PIL import Image
from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
from torchvision import transforms

from .configuration_minicpm import MiniCPMVConfig
from .modeling_minicpm import MiniCPMForCausalLM, MiniCPMPreTrainedModel
from .resampler import Resampler


class MiniCPMVPreTrainedModel(MiniCPMPreTrainedModel):
    config_class = MiniCPMVConfig


class MiniCPMV(MiniCPMVPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.llm = MiniCPMForCausalLM(config)
        self.vpm = self.init_vision_module()
        self.vision_dim = self.vpm.embed_dim
        self.embed_dim = self.llm.config.hidden_size
        self.resampler = self.init_resampler(self.embed_dim, self.vision_dim)
        self.transform = self.init_transform()

    def init_vision_module(self):
        model = timm.create_model(
            self.config.vision_encoder,
            pretrained=False,
            num_classes=0,
            dynamic_img_size=True,
            dynamic_img_pad=True
        )

        if isinstance(model, timm.models.VisionTransformer):
            if model.attn_pool is not None:
                model.attn_pool = torch.nn.Identity()

        if self.config.drop_vision_last_layer:
            model.blocks = model.blocks[:-1]

        return model

    def init_resampler(self, embed_dim, vision_dim):
        return Resampler(
            grid_size=int(math.sqrt(self.config.query_num)),
            embed_dim=embed_dim,
            num_heads=embed_dim // 128,
            kv_dim=vision_dim,
            adaptive=True
        )

    def init_transform(self):
        return transforms.Compose(
            [
                transforms.ToTensor(),
                transforms.Normalize(
                    mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD
                ),
            ]
        )

    def get_input_embeddings(self):
        return self.llm.embed_tokens

    def set_input_embeddings(self, value):
        self.llm.embed_tokens = value

    def get_output_embeddings(self):
        return self.llm.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.llm.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.llm = decoder

    def get_decoder(self):
        return self.llm

    def get_vision_embedding(self, pixel_values):
        res = []
        dtype = self.vpm.pos_embed.data.dtype
        for pixel_value in pixel_values:
            H, W = pixel_value.shape[-2:]
            tgt_size = (
            math.ceil(H / self.vpm.patch_embed.patch_size[0]), math.ceil(W / self.vpm.patch_embed.patch_size[0]))
            vision_embedding = self.vpm.forward_features(pixel_value.unsqueeze(0).type(dtype))
            if hasattr(self.vpm, 'num_prefix_tokens') and self.vpm.num_prefix_tokens > 0:
                vision_embedding = vision_embedding[:, self.vpm.num_prefix_tokens:]
            res.append(self.resampler(vision_embedding, tgt_size))
        return torch.vstack(res)

    def get_vllm_embedding(self, data):
        if "vision_hidden_states" not in data:
            pixel_values_list = data["pixel_values"]
            vision_hidden_states = []
            for pixel_values in pixel_values_list:
                if len(pixel_values) > 0:
                    vision_hidden_states.append(self.get_vision_embedding(pixel_values))
                elif self.training:
                    dtype = self.vpm.pos_embed.data.dtype
                    device = self.vpm.pos_embed.data.device
                    dummy_image = torch.zeros(
                        (1, 3, 224, 224), device=device, dtype=dtype
                    )
                    vision_hidden_states.append(self.get_vision_embedding(dummy_image))
                else:
                    vision_hidden_states.append([])

        else:
            vision_hidden_states = data["vision_hidden_states"]

        vllm_embedding = (
            self.llm.model.embed_tokens(data["input_ids"]) * self.llm.config.scale_emb
        )
        vision_hidden_states = [
            i.type(vllm_embedding.dtype) if isinstance(i, torch.Tensor) else i
            for i in vision_hidden_states
        ]

        bs = len(data["input_ids"])
        for i in range(bs):
            cur_vs_hs = vision_hidden_states[i]
            if len(cur_vs_hs) > 0:
                cur_vllm_emb = vllm_embedding[i]
                cur_image_bound = data["image_bounds"][i]
                if len(cur_image_bound) > 0:
                    image_indices = torch.stack(
                        [
                            torch.arange(r[0], r[1], dtype=torch.long)
                            for r in cur_image_bound
                        ]
                    ).to(vllm_embedding.device)

                    cur_vllm_emb.scatter_(
                        0,
                        image_indices.view(-1, 1).repeat(1, cur_vllm_emb.shape[-1]),
                        cur_vs_hs.view(-1, cur_vs_hs.shape[-1]),
                    )
                elif self.training:
                    cur_vllm_emb += cur_vs_hs[0].mean() * 0

        return vllm_embedding, vision_hidden_states

    def forward(self, data, **kwargs):
        vllm_embedding, vision_hidden_states = self.get_vllm_embedding(data)
        position_ids = data["position_ids"]
        if position_ids.dtype != torch.int64:
            position_ids = position_ids.long()

        return self.llm(
            input_ids=None,
            position_ids=position_ids,
            inputs_embeds=vllm_embedding,
            **kwargs
        )

    def _decode_text(self, result_ids, tokenizer):
        result_text = []
        for result in result_ids:
            result = result[result != 0]
            if result[0] == tokenizer.bos_id:
                result = result[1:]
            if result[-1] == tokenizer.eos_id:
                result = result[:-1]
            result_text.append(tokenizer.decode(result).strip())
        return result_text

    def _decode(self, inputs_embeds, tokenizer, **kwargs):
        output = self.llm.generate(
            inputs_embeds=inputs_embeds,
            pad_token_id=0,
            eos_token_id=tokenizer.eos_token_id if tokenizer is not None else kwargs.pop("eos_token_id", 2),
            **kwargs
        )
        return output

    def generate(
        self,
        input_ids,
        pixel_values=None,
        image_sizes=[],
        image_bounds=[],
        tgt_sizes=[],
        tokenizer=None,
        vision_hidden_states=None,
        **kwargs
    ):
        bs = len(input_ids)
        img_list = pixel_values
        if img_list == None:
            img_list = [[] for i in range(bs)]
        assert bs == len(img_list)

        if vision_hidden_states is None:
            pixel_values = []
            for i in range(bs):
                img_inps = []
                for img in img_list[i]:
                    img_inps.append(img.to(self.device, self.dtype))
                pixel_values.append(img_inps)

        # with torch.inference_mode():
        (
            input_embeds,
            vision_hidden_states,
        ) = self.get_vllm_embedding({
            "input_ids": input_ids,
            "pixel_values": pixel_values,
            "image_sizes": image_sizes,
            "image_bounds": image_bounds,
            "tgt_sizes": tgt_sizes
        })
        result = self._decode(input_embeds, tokenizer, **kwargs)

        return result

    def chat(
        self,
        image,
        msgs,
        context,
        tokenizer,
        processor,
        vision_hidden_states=None,
        max_new_tokens=1024,
        sampling=True,
        max_inp_length=2048,
        **kwargs
    ):
        if isinstance(msgs, str):
            msgs = json.loads(msgs)
        # msgs to prompt

        prompt = processor.tokenizer.apply_chat_template(msgs)
        inputs = processor(prompt, [image], return_tensors="pt").to(self.device)

        if sampling:
            generation_config = {
                "top_p": 0.8,
                "top_k": 100,
                "temperature": 0.7,
                "do_sample": True,
                "repetition_penalty": 1.05
            }
        else:
            generation_config = {
                "num_beams": 3,
                "repetition_penalty": 1.2,
            }

        generation_config.update(
            (k, kwargs[k]) for k in generation_config.keys() & kwargs.keys()
        )
        with torch.inference_mode():
            res = self.generate(
                **inputs,
                tokenizer=tokenizer,
                max_new_tokens=max_new_tokens,
                vision_hidden_states=vision_hidden_states,
                **generation_config,
            )
            res = self._decode_text(res, tokenizer)
        answer = res[0]
        context = msgs.copy()
        context.append({"role": "assistant", "content": answer})

        return answer, context, generation_config