File size: 5,594 Bytes
fda92ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# Copyright (c) Alibaba Cloud.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

from collections import OrderedDict
import math
import requests
from io import BytesIO
from functools import partial
from PIL import Image
from typing import Callable, Optional, Sequence, Tuple, List, Union
import numpy as np

import torch
from torch import nn
from torch.nn import functional as F
from torch.nn.init import trunc_normal_
from torchvision import transforms
from torchvision.transforms import InterpolationMode

def get_abs_pos(abs_pos, tgt_size):
    # abs_pos: L, C
    # tgt_size: (H, W)
    # return: M, C
    src_size = int(math.sqrt(abs_pos.size(0)))
    # tgt_size = int(math.sqrt(tgt_size))
    dtype = abs_pos.dtype

    return F.interpolate(
        abs_pos.float().reshape(1, src_size, src_size, -1).permute(0, 3, 1, 2),
        size=(tgt_size[0], tgt_size[1]),
        mode="bicubic",
        align_corners=False,
    ).permute(0, 2, 3, 1).flatten(0, 2).to(dtype=dtype)


# https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
    """
    grid_size: int of the grid height and width
    return:
    pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
    """
    if isinstance(grid_size, int):
        grid_h_size, grid_w_size = grid_size, grid_size
    else:
        grid_h_size, grid_w_size = grid_size[0], grid_size[1]

    grid_h = np.arange(grid_h_size, dtype=np.float32)
    grid_w = np.arange(grid_w_size, dtype=np.float32)
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)

    grid = grid.reshape([2, 1, grid_h_size, grid_w_size])
    pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
    if cls_token:
        pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
    return pos_embed


def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
    assert embed_dim % 2 == 0

    # use half of dimensions to encode grid_h
    emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])  # (H*W, D/2)
    emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])  # (H*W, D/2)

    emb = np.concatenate([emb_h, emb_w], axis=1)  # (H*W, D)
    return emb


def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
    """
    embed_dim: output dimension for each position
    pos: a list of positions to be encoded: size (M,)
    out: (M, D)
    """
    assert embed_dim % 2 == 0
    omega = np.arange(embed_dim // 2, dtype=np.float32)
    omega /= embed_dim / 2.
    omega = 1. / 10000 ** omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = np.einsum('m,d->md', pos, omega)  # (M, D/2), outer product

    emb_sin = np.sin(out)  # (M, D/2)
    emb_cos = np.cos(out)  # (M, D/2)

    emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D)
    return emb


class Resampler(nn.Module):
    """
    A 2D perceiver-resampler network with one cross attention layers by
        (grid_size**2) learnable queries and 2d sincos pos_emb
    Outputs:
        A tensor with the shape of (grid_size**2, embed_dim)
    """

    def __init__(
            self,
            grid_size,
            embed_dim,
            num_heads,
            kv_dim=None,
            norm_layer=partial(nn.LayerNorm, eps=1e-6),
            adaptive=False
    ):
        super().__init__()
        self.num_queries = grid_size ** 2
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.adaptive = adaptive

        self.pos_embed = nn.Parameter(
            torch.from_numpy(get_2d_sincos_pos_embed(embed_dim, grid_size)).float()
        ).requires_grad_(False)

        self.query = nn.Parameter(torch.zeros(self.num_queries, embed_dim))
        trunc_normal_(self.query, std=.02)

        if kv_dim is not None and kv_dim != embed_dim:
            self.kv_proj = nn.Linear(kv_dim, embed_dim, bias=False)
        else:
            self.kv_proj = nn.Identity()

        self.attn = nn.MultiheadAttention(embed_dim, num_heads)
        self.ln_q = norm_layer(embed_dim)
        self.ln_kv = norm_layer(embed_dim)

        self.ln_post = norm_layer(embed_dim)
        self.proj = nn.Parameter((embed_dim ** -0.5) * torch.randn(embed_dim, embed_dim))

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def forward(self, x, tgt_size=None, attn_mask=None):
        if self.adaptive:
            pos_embed = torch.Tensor(get_2d_sincos_pos_embed(self.embed_dim, tgt_size)).float().to(device=x.device, dtype=x.dtype)
        else:
            pos_embed = get_abs_pos(self.pos_embed, tgt_size)

        x = self.kv_proj(x)
        x = self.ln_kv(x).permute(1, 0, 2)

        N = x.shape[1]
        q = self.ln_q(self.query)
        out = self.attn(
            self._repeat(q, N) + self.pos_embed.unsqueeze(1),
            x + pos_embed.unsqueeze(1),
            x,
            attn_mask=attn_mask)[0]
        x = out.permute(1, 0, 2)

        x = self.ln_post(x)
        x = x @ self.proj
        return x

    def _repeat(self, query, N: int):
        return query.unsqueeze(1).repeat(1, N, 1)