|
|
|
|
|
|
|
|
|
|
|
from collections import OrderedDict |
|
import math |
|
import requests |
|
from io import BytesIO |
|
from functools import partial |
|
from PIL import Image |
|
from typing import Callable, Optional, Sequence, Tuple, List, Union |
|
import numpy as np |
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
from torch.nn.init import trunc_normal_ |
|
from torchvision import transforms |
|
from torchvision.transforms import InterpolationMode |
|
|
|
from functools import partial |
|
import numpy as np |
|
import warnings |
|
from typing import Optional, Tuple |
|
import torch |
|
from torch import nn |
|
from torch import Tensor |
|
import torch.nn.functional as F |
|
from torch.nn.functional import * |
|
from torch.nn.modules.activation import * |
|
from torch.nn.init import trunc_normal_ |
|
from torch.nn.init import constant_, xavier_normal_, xavier_uniform_ |
|
from transformers import PreTrainedModel |
|
from transformers.integrations import is_deepspeed_zero3_enabled |
|
def get_abs_pos(abs_pos, tgt_size): |
|
|
|
|
|
|
|
src_size = int(math.sqrt(abs_pos.size(0))) |
|
|
|
dtype = abs_pos.dtype |
|
|
|
return F.interpolate( |
|
abs_pos.float().reshape(1, src_size, src_size, -1).permute(0, 3, 1, 2), |
|
size=(tgt_size[0], tgt_size[1]), |
|
mode="bicubic", |
|
align_corners=False, |
|
).permute(0, 2, 3, 1).flatten(0, 2).to(dtype=dtype) |
|
|
|
|
|
|
|
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False): |
|
""" |
|
grid_size: int of the grid height and width |
|
return: |
|
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) |
|
""" |
|
if isinstance(grid_size, int): |
|
grid_h_size, grid_w_size = grid_size, grid_size |
|
else: |
|
grid_h_size, grid_w_size = grid_size[0], grid_size[1] |
|
|
|
grid_h = np.arange(grid_h_size, dtype=np.float32) |
|
grid_w = np.arange(grid_w_size, dtype=np.float32) |
|
grid = np.meshgrid(grid_w, grid_h) |
|
grid = np.stack(grid, axis=0) |
|
|
|
grid = grid.reshape([2, 1, grid_h_size, grid_w_size]) |
|
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) |
|
if cls_token: |
|
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0) |
|
return pos_embed |
|
|
|
|
|
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): |
|
assert embed_dim % 2 == 0 |
|
|
|
|
|
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) |
|
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) |
|
|
|
emb = np.concatenate([emb_h, emb_w], axis=1) |
|
return emb |
|
|
|
|
|
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): |
|
""" |
|
embed_dim: output dimension for each position |
|
pos: a list of positions to be encoded: size (M,) |
|
out: (M, D) |
|
""" |
|
assert embed_dim % 2 == 0 |
|
omega = np.arange(embed_dim // 2, dtype=np.float32) |
|
omega /= embed_dim / 2. |
|
omega = 1. / 10000 ** omega |
|
|
|
pos = pos.reshape(-1) |
|
out = np.einsum('m,d->md', pos, omega) |
|
|
|
emb_sin = np.sin(out) |
|
emb_cos = np.cos(out) |
|
|
|
emb = np.concatenate([emb_sin, emb_cos], axis=1) |
|
return emb |
|
|
|
|
|
class Resampler(nn.Module): |
|
""" |
|
A 2D perceiver-resampler network with one cross attention layers by |
|
(grid_size**2) learnable queries and 2d sincos pos_emb |
|
Outputs: |
|
A tensor with the shape of (grid_size**2, embed_dim) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
grid_size, |
|
embed_dim, |
|
num_heads, |
|
kv_dim=None, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
adaptive=False |
|
): |
|
super().__init__() |
|
self.num_queries = grid_size ** 2 |
|
self.embed_dim = embed_dim |
|
self.num_heads = num_heads |
|
self.adaptive = adaptive |
|
|
|
self.pos_embed = nn.Parameter( |
|
torch.from_numpy(get_2d_sincos_pos_embed(embed_dim, grid_size)).float() |
|
).requires_grad_(False) |
|
self.query = nn.Parameter(torch.zeros(self.num_queries, embed_dim)) |
|
|
|
if kv_dim is not None and kv_dim != embed_dim: |
|
self.kv_proj = nn.Linear(kv_dim, embed_dim, bias=False) |
|
else: |
|
self.kv_proj = nn.Identity() |
|
|
|
self.attn = MultiheadAttention(embed_dim, num_heads) |
|
self.ln_q = norm_layer(embed_dim) |
|
self.ln_kv = norm_layer(embed_dim) |
|
|
|
self.ln_post = norm_layer(embed_dim) |
|
self.proj = nn.Parameter((embed_dim ** -0.5) * torch.randn(embed_dim, embed_dim)) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
def forward(self, x, tgt_size=None, attn_mask=None): |
|
if self.adaptive: |
|
pos_embed = torch.Tensor(get_2d_sincos_pos_embed(self.embed_dim, tgt_size)).float().to(device=x.device, dtype=x.dtype) |
|
else: |
|
pos_embed = get_abs_pos(self.pos_embed, tgt_size) |
|
|
|
x = self.kv_proj(x) |
|
x = self.ln_kv(x).permute(1, 0, 2) |
|
|
|
N = x.shape[1] |
|
q = self.ln_q(self.query) |
|
|
|
out = self.attn( |
|
self._repeat(q, N) + self.pos_embed.unsqueeze(1), |
|
x + pos_embed.unsqueeze(1), |
|
x, |
|
attn_mask=attn_mask)[0] |
|
x = out.permute(1, 0, 2) |
|
x = self.ln_post(x) |
|
x = x @ self.proj |
|
return x |
|
|
|
def _repeat(self, query, N: int): |
|
return query.unsqueeze(1).repeat(1, N, 1) |
|
|
|
|
|
|
|
class MultiheadAttention(nn.MultiheadAttention): |
|
def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, |
|
add_zero_attn=False, kdim=None, vdim=None, batch_first=False, device=None, dtype=None): |
|
super().__init__(embed_dim, num_heads, dropout, bias, add_bias_kv, add_zero_attn, kdim, vdim, batch_first, device, dtype) |
|
|
|
|
|
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias,) |
|
|
|
def forward( |
|
self, |
|
query: Tensor, |
|
key: Tensor, |
|
value: Tensor, |
|
key_padding_mask: Optional[Tensor] = None, |
|
need_weights: bool = True, |
|
attn_mask: Optional[Tensor] = None, |
|
average_attn_weights: bool = True, |
|
is_causal : bool = False) -> Tuple[Tensor, Optional[Tensor]]: |
|
why_not_fast_path = '' |
|
if ((attn_mask is not None and torch.is_floating_point(attn_mask)) |
|
or (key_padding_mask is not None) and torch.is_floating_point(key_padding_mask)): |
|
why_not_fast_path = "floating-point masks are not supported for fast path." |
|
|
|
is_batched = query.dim() == 3 |
|
|
|
key_padding_mask = F._canonical_mask( |
|
mask=key_padding_mask, |
|
mask_name="key_padding_mask", |
|
other_type=F._none_or_dtype(attn_mask), |
|
other_name="attn_mask", |
|
target_type=query.dtype |
|
) |
|
|
|
attn_mask = F._canonical_mask( |
|
mask=attn_mask, |
|
mask_name="attn_mask", |
|
other_type=None, |
|
other_name="", |
|
target_type=query.dtype, |
|
check_other=False, |
|
) |
|
|
|
|
|
if not is_batched: |
|
why_not_fast_path = f"input not batched; expected query.dim() of 3 but got {query.dim()}" |
|
elif query is not key or key is not value: |
|
|
|
|
|
|
|
why_not_fast_path = "non-self attention was used (query, key, and value are not the same Tensor)" |
|
elif self.in_proj_bias is not None and query.dtype != self.in_proj_bias.dtype: |
|
why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_bias ({self.in_proj_bias.dtype}) don't match" |
|
elif self.in_proj_weight is None: |
|
why_not_fast_path = "in_proj_weight was None" |
|
elif query.dtype != self.in_proj_weight.dtype: |
|
|
|
why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_weight ({self.in_proj_weight.dtype}) don't match" |
|
elif self.training: |
|
why_not_fast_path = "training is enabled" |
|
elif (self.num_heads % 2) != 0: |
|
why_not_fast_path = "self.num_heads is not even" |
|
elif not self.batch_first: |
|
why_not_fast_path = "batch_first was not True" |
|
elif self.bias_k is not None: |
|
why_not_fast_path = "self.bias_k was not None" |
|
elif self.bias_v is not None: |
|
why_not_fast_path = "self.bias_v was not None" |
|
elif self.add_zero_attn: |
|
why_not_fast_path = "add_zero_attn was enabled" |
|
elif not self._qkv_same_embed_dim: |
|
why_not_fast_path = "_qkv_same_embed_dim was not True" |
|
elif query.is_nested and (key_padding_mask is not None or attn_mask is not None): |
|
why_not_fast_path = "supplying both src_key_padding_mask and src_mask at the same time \ |
|
is not supported with NestedTensor input" |
|
elif torch.is_autocast_enabled(): |
|
why_not_fast_path = "autocast is enabled" |
|
|
|
if not why_not_fast_path: |
|
tensor_args = ( |
|
query, |
|
key, |
|
value, |
|
self.in_proj_weight, |
|
self.in_proj_bias, |
|
self.out_proj.weight, |
|
self.out_proj.bias, |
|
) |
|
|
|
|
|
if torch.overrides.has_torch_function(tensor_args): |
|
why_not_fast_path = "some Tensor argument has_torch_function" |
|
elif _is_make_fx_tracing(): |
|
why_not_fast_path = "we are running make_fx tracing" |
|
elif not all(_check_arg_device(x) for x in tensor_args): |
|
why_not_fast_path = ("some Tensor argument's device is neither one of " |
|
f"cpu, cuda or {torch.utils.backend_registration._privateuse1_backend_name}") |
|
elif torch.is_grad_enabled() and any(_arg_requires_grad(x) for x in tensor_args): |
|
why_not_fast_path = ("grad is enabled and at least one of query or the " |
|
"input/output projection weights or biases requires_grad") |
|
if not why_not_fast_path: |
|
merged_mask, mask_type = self.merge_masks(attn_mask, key_padding_mask, query) |
|
|
|
if self.in_proj_bias is not None and self.in_proj_weight is not None: |
|
return torch._native_multi_head_attention( |
|
query, |
|
key, |
|
value, |
|
self.embed_dim, |
|
self.num_heads, |
|
self.in_proj_weight, |
|
self.in_proj_bias, |
|
self.out_proj.weight, |
|
self.out_proj.bias, |
|
merged_mask, |
|
need_weights, |
|
average_attn_weights, |
|
mask_type) |
|
|
|
any_nested = query.is_nested or key.is_nested or value.is_nested |
|
assert not any_nested, ("MultiheadAttention does not support NestedTensor outside of its fast path. " + |
|
f"The fast path was not hit because {why_not_fast_path}") |
|
|
|
if self.batch_first and is_batched: |
|
|
|
if key is value: |
|
if query is key: |
|
query = key = value = query.transpose(1, 0) |
|
else: |
|
query, key = (x.transpose(1, 0) for x in (query, key)) |
|
value = key |
|
else: |
|
query, key, value = (x.transpose(1, 0) for x in (query, key, value)) |
|
|
|
if not self._qkv_same_embed_dim: |
|
attn_output, attn_output_weights = self.multi_head_attention_forward( |
|
query, key, value, self.embed_dim, self.num_heads, |
|
self.in_proj_weight, self.in_proj_bias, |
|
self.bias_k, self.bias_v, self.add_zero_attn, |
|
self.dropout, self.out_proj.weight, self.out_proj.bias, |
|
training=self.training, |
|
key_padding_mask=key_padding_mask, need_weights=need_weights, |
|
attn_mask=attn_mask, |
|
use_separate_proj_weight=True, |
|
q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight, |
|
v_proj_weight=self.v_proj_weight, |
|
average_attn_weights=average_attn_weights, |
|
is_causal=is_causal) |
|
else: |
|
attn_output, attn_output_weights = self.multi_head_attention_forward( |
|
query, key, value, self.embed_dim, self.num_heads, |
|
self.in_proj_weight, self.in_proj_bias, |
|
self.bias_k, self.bias_v, self.add_zero_attn, |
|
self.dropout, self.out_proj.weight, self.out_proj.bias, |
|
training=self.training, |
|
key_padding_mask=key_padding_mask, |
|
need_weights=need_weights, |
|
attn_mask=attn_mask, |
|
average_attn_weights=average_attn_weights, |
|
is_causal=is_causal) |
|
if self.batch_first and is_batched: |
|
return attn_output.transpose(1, 0), attn_output_weights |
|
else: |
|
return attn_output, attn_output_weights |
|
|
|
def multi_head_attention_forward( |
|
self, |
|
query: Tensor, |
|
key: Tensor, |
|
value: Tensor, |
|
embed_dim_to_check: int, |
|
num_heads: int, |
|
in_proj_weight: Optional[Tensor], |
|
in_proj_bias: Optional[Tensor], |
|
bias_k: Optional[Tensor], |
|
bias_v: Optional[Tensor], |
|
add_zero_attn: bool, |
|
dropout_p: float, |
|
out_proj_weight: Tensor, |
|
out_proj_bias: Optional[Tensor], |
|
training: bool = True, |
|
key_padding_mask: Optional[Tensor] = None, |
|
need_weights: bool = True, |
|
attn_mask: Optional[Tensor] = None, |
|
use_separate_proj_weight: bool = False, |
|
q_proj_weight: Optional[Tensor] = None, |
|
k_proj_weight: Optional[Tensor] = None, |
|
v_proj_weight: Optional[Tensor] = None, |
|
static_k: Optional[Tensor] = None, |
|
static_v: Optional[Tensor] = None, |
|
average_attn_weights: bool = True, |
|
is_causal: bool = False, |
|
) -> Tuple[Tensor, Optional[Tensor]]: |
|
tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, out_proj_weight, out_proj_bias) |
|
if has_torch_function(tens_ops): |
|
return handle_torch_function( |
|
multi_head_attention_forward, |
|
tens_ops, |
|
query, |
|
key, |
|
value, |
|
embed_dim_to_check, |
|
num_heads, |
|
in_proj_weight, |
|
in_proj_bias, |
|
bias_k, |
|
bias_v, |
|
add_zero_attn, |
|
dropout_p, |
|
out_proj_weight, |
|
out_proj_bias, |
|
training=training, |
|
key_padding_mask=key_padding_mask, |
|
need_weights=need_weights, |
|
attn_mask=attn_mask, |
|
is_causal=is_causal, |
|
use_separate_proj_weight=use_separate_proj_weight, |
|
q_proj_weight=q_proj_weight, |
|
k_proj_weight=k_proj_weight, |
|
v_proj_weight=v_proj_weight, |
|
static_k=static_k, |
|
static_v=static_v, |
|
average_attn_weights=average_attn_weights, |
|
) |
|
|
|
is_batched = _mha_shape_check(query, key, value, key_padding_mask, attn_mask, num_heads) |
|
|
|
|
|
|
|
|
|
if not is_batched: |
|
|
|
query = query.unsqueeze(1) |
|
key = key.unsqueeze(1) |
|
value = value.unsqueeze(1) |
|
if key_padding_mask is not None: |
|
key_padding_mask = key_padding_mask.unsqueeze(0) |
|
|
|
|
|
tgt_len, bsz, embed_dim = query.shape |
|
src_len, _, _ = key.shape |
|
|
|
key_padding_mask = _canonical_mask( |
|
mask=key_padding_mask, |
|
mask_name="key_padding_mask", |
|
other_type=_none_or_dtype(attn_mask), |
|
other_name="attn_mask", |
|
target_type=query.dtype |
|
) |
|
|
|
if is_causal and attn_mask is None: |
|
raise RuntimeError( |
|
"Need attn_mask if specifying the is_causal hint. " |
|
"You may use the Transformer module method " |
|
"`generate_square_subsequent_mask` to create this mask." |
|
) |
|
|
|
if is_causal and key_padding_mask is None and not need_weights: |
|
|
|
|
|
|
|
attn_mask = None |
|
else: |
|
attn_mask = _canonical_mask( |
|
mask=attn_mask, |
|
mask_name="attn_mask", |
|
other_type=None, |
|
other_name="", |
|
target_type=query.dtype, |
|
check_other=False, |
|
) |
|
|
|
if key_padding_mask is not None: |
|
|
|
|
|
|
|
is_causal = False |
|
|
|
assert embed_dim == embed_dim_to_check, \ |
|
f"was expecting embedding dimension of {embed_dim_to_check}, but got {embed_dim}" |
|
if isinstance(embed_dim, torch.Tensor): |
|
|
|
head_dim = embed_dim.div(num_heads, rounding_mode='trunc') |
|
else: |
|
head_dim = embed_dim // num_heads |
|
assert head_dim * num_heads == embed_dim, f"embed_dim {embed_dim} not divisible by num_heads {num_heads}" |
|
if use_separate_proj_weight: |
|
|
|
assert key.shape[:2] == value.shape[:2], \ |
|
f"key's sequence and batch dims {key.shape[:2]} do not match value's {value.shape[:2]}" |
|
else: |
|
assert key.shape == value.shape, f"key shape {key.shape} does not match value shape {value.shape}" |
|
|
|
|
|
|
|
|
|
|
|
if not use_separate_proj_weight: |
|
assert in_proj_weight is not None, "use_separate_proj_weight is False but in_proj_weight is None" |
|
q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias) |
|
else: |
|
assert q_proj_weight is not None, "use_separate_proj_weight is True but q_proj_weight is None" |
|
assert k_proj_weight is not None, "use_separate_proj_weight is True but k_proj_weight is None" |
|
assert v_proj_weight is not None, "use_separate_proj_weight is True but v_proj_weight is None" |
|
if in_proj_bias is None: |
|
b_q = b_k = b_v = None |
|
else: |
|
b_q, b_k, b_v = in_proj_bias.chunk(3) |
|
q, k, v = _in_projection(query, key, value, q_proj_weight, k_proj_weight, v_proj_weight, b_q, b_k, b_v) |
|
|
|
|
|
|
|
if attn_mask is not None: |
|
|
|
if attn_mask.dim() == 2: |
|
correct_2d_size = (tgt_len, src_len) |
|
if attn_mask.shape != correct_2d_size: |
|
raise RuntimeError(f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}.") |
|
attn_mask = attn_mask.unsqueeze(0) |
|
elif attn_mask.dim() == 3: |
|
correct_3d_size = (bsz * num_heads, tgt_len, src_len) |
|
if attn_mask.shape != correct_3d_size: |
|
raise RuntimeError(f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}.") |
|
else: |
|
raise RuntimeError(f"attn_mask's dimension {attn_mask.dim()} is not supported") |
|
|
|
|
|
if bias_k is not None and bias_v is not None: |
|
assert static_k is None, "bias cannot be added to static key." |
|
assert static_v is None, "bias cannot be added to static value." |
|
k = torch.cat([k, bias_k.repeat(1, bsz, 1)]) |
|
v = torch.cat([v, bias_v.repeat(1, bsz, 1)]) |
|
if attn_mask is not None: |
|
attn_mask = pad(attn_mask, (0, 1)) |
|
if key_padding_mask is not None: |
|
key_padding_mask = pad(key_padding_mask, (0, 1)) |
|
else: |
|
assert bias_k is None |
|
assert bias_v is None |
|
|
|
|
|
|
|
|
|
q = q.view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1) |
|
if static_k is None: |
|
k = k.view(k.shape[0], bsz * num_heads, head_dim).transpose(0, 1) |
|
else: |
|
|
|
assert static_k.size(0) == bsz * num_heads, \ |
|
f"expecting static_k.size(0) of {bsz * num_heads}, but got {static_k.size(0)}" |
|
assert static_k.size(2) == head_dim, \ |
|
f"expecting static_k.size(2) of {head_dim}, but got {static_k.size(2)}" |
|
k = static_k |
|
if static_v is None: |
|
v = v.view(v.shape[0], bsz * num_heads, head_dim).transpose(0, 1) |
|
else: |
|
|
|
assert static_v.size(0) == bsz * num_heads, \ |
|
f"expecting static_v.size(0) of {bsz * num_heads}, but got {static_v.size(0)}" |
|
assert static_v.size(2) == head_dim, \ |
|
f"expecting static_v.size(2) of {head_dim}, but got {static_v.size(2)}" |
|
v = static_v |
|
|
|
|
|
if add_zero_attn: |
|
zero_attn_shape = (bsz * num_heads, 1, head_dim) |
|
k = torch.cat([k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=1) |
|
v = torch.cat([v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=1) |
|
if attn_mask is not None: |
|
attn_mask = pad(attn_mask, (0, 1)) |
|
if key_padding_mask is not None: |
|
key_padding_mask = pad(key_padding_mask, (0, 1)) |
|
|
|
|
|
src_len = k.size(1) |
|
|
|
|
|
if key_padding_mask is not None: |
|
assert key_padding_mask.shape == (bsz, src_len), \ |
|
f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}" |
|
key_padding_mask = key_padding_mask.view(bsz, 1, 1, src_len). \ |
|
expand(-1, num_heads, -1, -1).reshape(bsz * num_heads, 1, src_len) |
|
if attn_mask is None: |
|
attn_mask = key_padding_mask |
|
else: |
|
attn_mask = attn_mask + key_padding_mask |
|
|
|
|
|
if not training: |
|
dropout_p = 0.0 |
|
|
|
|
|
|
|
|
|
|
|
if need_weights: |
|
B, Nt, E = q.shape |
|
q_scaled = q / math.sqrt(E) |
|
|
|
assert not (is_causal and attn_mask is None), "FIXME: is_causal not implemented for need_weights" |
|
|
|
if attn_mask is not None: |
|
attn_output_weights = torch.baddbmm(attn_mask, q_scaled, k.transpose(-2, -1)) |
|
else: |
|
attn_output_weights = torch.bmm(q_scaled, k.transpose(-2, -1)) |
|
attn_output_weights = softmax(attn_output_weights, dim=-1) |
|
if dropout_p > 0.0: |
|
attn_output_weights = dropout(attn_output_weights, p=dropout_p) |
|
|
|
attn_output = torch.bmm(attn_output_weights, v) |
|
|
|
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len * bsz, embed_dim) |
|
attn_output = self.out_proj(attn_output) |
|
|
|
attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1)) |
|
|
|
|
|
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) |
|
if average_attn_weights: |
|
attn_output_weights = attn_output_weights.mean(dim=1) |
|
|
|
if not is_batched: |
|
|
|
attn_output = attn_output.squeeze(1) |
|
attn_output_weights = attn_output_weights.squeeze(0) |
|
return attn_output, attn_output_weights |
|
else: |
|
|
|
|
|
|
|
if attn_mask is not None: |
|
if attn_mask.size(0) == 1 and attn_mask.dim() == 3: |
|
attn_mask = attn_mask.unsqueeze(0) |
|
else: |
|
attn_mask = attn_mask.view(bsz, num_heads, -1, src_len) |
|
|
|
q = q.view(bsz, num_heads, tgt_len, head_dim) |
|
k = k.view(bsz, num_heads, src_len, head_dim) |
|
v = v.view(bsz, num_heads, src_len, head_dim) |
|
|
|
attn_output = F.scaled_dot_product_attention(q, k, v, attn_mask, dropout_p, is_causal) |
|
attn_output = attn_output.permute(2, 0, 1, 3).contiguous().view(bsz * tgt_len, embed_dim) |
|
|
|
attn_output = self.out_proj(attn_output) |
|
|
|
attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1)) |
|
if not is_batched: |
|
|
|
attn_output = attn_output.squeeze(1) |
|
return attn_output, None |
|
|
|
|
|
def _mha_shape_check(query: Tensor, key: Tensor, value: Tensor, |
|
key_padding_mask: Optional[Tensor], attn_mask: Optional[Tensor], num_heads: int): |
|
|
|
|
|
|
|
|
|
|
|
if query.dim() == 3: |
|
|
|
is_batched = True |
|
assert key.dim() == 3 and value.dim() == 3, \ |
|
("For batched (3-D) `query`, expected `key` and `value` to be 3-D" |
|
f" but found {key.dim()}-D and {value.dim()}-D tensors respectively") |
|
if key_padding_mask is not None: |
|
assert key_padding_mask.dim() == 2, \ |
|
("For batched (3-D) `query`, expected `key_padding_mask` to be `None` or 2-D" |
|
f" but found {key_padding_mask.dim()}-D tensor instead") |
|
if attn_mask is not None: |
|
assert attn_mask.dim() in (2, 3), \ |
|
("For batched (3-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D" |
|
f" but found {attn_mask.dim()}-D tensor instead") |
|
elif query.dim() == 2: |
|
|
|
is_batched = False |
|
assert key.dim() == 2 and value.dim() == 2, \ |
|
("For unbatched (2-D) `query`, expected `key` and `value` to be 2-D" |
|
f" but found {key.dim()}-D and {value.dim()}-D tensors respectively") |
|
|
|
if key_padding_mask is not None: |
|
assert key_padding_mask.dim() == 1, \ |
|
("For unbatched (2-D) `query`, expected `key_padding_mask` to be `None` or 1-D" |
|
f" but found {key_padding_mask.dim()}-D tensor instead") |
|
|
|
if attn_mask is not None: |
|
assert attn_mask.dim() in (2, 3), \ |
|
("For unbatched (2-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D" |
|
f" but found {attn_mask.dim()}-D tensor instead") |
|
if attn_mask.dim() == 3: |
|
expected_shape = (num_heads, query.shape[0], key.shape[0]) |
|
assert attn_mask.shape == expected_shape, \ |
|
(f"Expected `attn_mask` shape to be {expected_shape} but got {attn_mask.shape}") |
|
else: |
|
raise AssertionError( |
|
f"query should be unbatched 2D or batched 3D tensor but received {query.dim()}-D query tensor") |
|
|
|
return is_batched |
|
|
|
|
|
def _canonical_mask( |
|
mask: Optional[Tensor], |
|
mask_name: str, |
|
other_type: Optional[DType], |
|
other_name: str, |
|
target_type: DType, |
|
check_other: bool = True, |
|
) -> Optional[Tensor]: |
|
|
|
if mask is not None: |
|
_mask_dtype = mask.dtype |
|
_mask_is_float = torch.is_floating_point(mask) |
|
if _mask_dtype != torch.bool and not _mask_is_float: |
|
raise AssertionError( |
|
f"only bool and floating types of {mask_name} are supported") |
|
if check_other and other_type is not None: |
|
if _mask_dtype != other_type: |
|
warnings.warn( |
|
f"Support for mismatched {mask_name} and {other_name} " |
|
"is deprecated. Use same type for both instead." |
|
) |
|
if not _mask_is_float: |
|
mask = ( |
|
torch.zeros_like(mask, dtype=target_type) |
|
.masked_fill_(mask, float("-inf")) |
|
) |
|
return mask |
|
|
|
|
|
def _none_or_dtype(input: Optional[Tensor]) -> Optional[DType]: |
|
if input is None: |
|
return None |
|
elif isinstance(input, torch.Tensor): |
|
return input.dtype |
|
raise RuntimeError("input to _none_or_dtype() must be None or torch.Tensor") |
|
|
|
def _in_projection_packed( |
|
q: Tensor, |
|
k: Tensor, |
|
v: Tensor, |
|
w: Tensor, |
|
b: Optional[Tensor] = None, |
|
) -> List[Tensor]: |
|
r""" |
|
Performs the in-projection step of the attention operation, using packed weights. |
|
Output is a triple containing projection tensors for query, key and value. |
|
Args: |
|
q, k, v: query, key and value tensors to be projected. For self-attention, |
|
these are typically the same tensor; for encoder-decoder attention, |
|
k and v are typically the same tensor. (We take advantage of these |
|
identities for performance if they are present.) Regardless, q, k and v |
|
must share a common embedding dimension; otherwise their shapes may vary. |
|
w: projection weights for q, k and v, packed into a single tensor. Weights |
|
are packed along dimension 0, in q, k, v order. |
|
b: optional projection biases for q, k and v, packed into a single tensor |
|
in q, k, v order. |
|
Shape: |
|
Inputs: |
|
- q: :math:`(..., E)` where E is the embedding dimension |
|
- k: :math:`(..., E)` where E is the embedding dimension |
|
- v: :math:`(..., E)` where E is the embedding dimension |
|
- w: :math:`(E * 3, E)` where E is the embedding dimension |
|
- b: :math:`E * 3` where E is the embedding dimension |
|
Output: |
|
- in output list :math:`[q', k', v']`, each output tensor will have the |
|
same shape as the corresponding input tensor. |
|
""" |
|
E = q.size(-1) |
|
if k is v: |
|
if q is k: |
|
|
|
proj = linear(q, w, b) |
|
|
|
proj = proj.unflatten(-1, (3, E)).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous() |
|
return proj[0], proj[1], proj[2] |
|
else: |
|
|
|
w_q, w_kv = w.split([E, E * 2]) |
|
if b is None: |
|
b_q = b_kv = None |
|
else: |
|
b_q, b_kv = b.split([E, E * 2]) |
|
q_proj = linear(q, w_q, b_q) |
|
kv_proj = linear(k, w_kv, b_kv) |
|
|
|
kv_proj = kv_proj.unflatten(-1, (2, E)).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous() |
|
return (q_proj, kv_proj[0], kv_proj[1]) |
|
else: |
|
w_q, w_k, w_v = w.chunk(3) |
|
if b is None: |
|
b_q = b_k = b_v = None |
|
else: |
|
b_q, b_k, b_v = b.chunk(3) |
|
return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v) |
|
|
|
|
|
def _in_projection( |
|
q: Tensor, |
|
k: Tensor, |
|
v: Tensor, |
|
w_q: Tensor, |
|
w_k: Tensor, |
|
w_v: Tensor, |
|
b_q: Optional[Tensor] = None, |
|
b_k: Optional[Tensor] = None, |
|
b_v: Optional[Tensor] = None, |
|
) -> Tuple[Tensor, Tensor, Tensor]: |
|
r""" |
|
Performs the in-projection step of the attention operation. This is simply |
|
a triple of linear projections, with shape constraints on the weights which |
|
ensure embedding dimension uniformity in the projected outputs. |
|
Output is a triple containing projection tensors for query, key and value. |
|
Args: |
|
q, k, v: query, key and value tensors to be projected. |
|
w_q, w_k, w_v: weights for q, k and v, respectively. |
|
b_q, b_k, b_v: optional biases for q, k and v, respectively. |
|
Shape: |
|
Inputs: |
|
- q: :math:`(Qdims..., Eq)` where Eq is the query embedding dimension and Qdims are any |
|
number of leading dimensions. |
|
- k: :math:`(Kdims..., Ek)` where Ek is the key embedding dimension and Kdims are any |
|
number of leading dimensions. |
|
- v: :math:`(Vdims..., Ev)` where Ev is the value embedding dimension and Vdims are any |
|
number of leading dimensions. |
|
- w_q: :math:`(Eq, Eq)` |
|
- w_k: :math:`(Eq, Ek)` |
|
- w_v: :math:`(Eq, Ev)` |
|
- b_q: :math:`(Eq)` |
|
- b_k: :math:`(Eq)` |
|
- b_v: :math:`(Eq)` |
|
Output: in output triple :math:`(q', k', v')`, |
|
- q': :math:`[Qdims..., Eq]` |
|
- k': :math:`[Kdims..., Eq]` |
|
- v': :math:`[Vdims..., Eq]` |
|
""" |
|
Eq, Ek, Ev = q.size(-1), k.size(-1), v.size(-1) |
|
assert w_q.shape == (Eq, Eq), f"expecting query weights shape of {(Eq, Eq)}, but got {w_q.shape}" |
|
assert w_k.shape == (Eq, Ek), f"expecting key weights shape of {(Eq, Ek)}, but got {w_k.shape}" |
|
assert w_v.shape == (Eq, Ev), f"expecting value weights shape of {(Eq, Ev)}, but got {w_v.shape}" |
|
assert b_q is None or b_q.shape == (Eq,), f"expecting query bias shape of {(Eq,)}, but got {b_q.shape}" |
|
assert b_k is None or b_k.shape == (Eq,), f"expecting key bias shape of {(Eq,)}, but got {b_k.shape}" |
|
assert b_v is None or b_v.shape == (Eq,), f"expecting value bias shape of {(Eq,)}, but got {b_v.shape}" |
|
return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v) |
|
|