RanchiZhao commited on
Commit
1b61607
1 Parent(s): 6db86f7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -16
README.md CHANGED
@@ -1,5 +1,9 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
3
  ---
4
  <div align="center">
5
  <img src="https://github.com/OpenBMB/MiniCPM/tree/main/assets/minicpm_logo.png" width="500em" ></img>
@@ -16,7 +20,7 @@ Join us in <a href="https://discord.gg/3cGQn9b3YM" target="_blank">Discord</a> a
16
  ## Introduction
17
  MiniCPM3-4B is the 3rd generation of MiniCPM series. The overall performance of MiniCPM3-4B surpasses Phi-3.5-mini-Instruct and GPT-3.5-Turbo-0125, being comparable with many recent 7B~9B models.
18
 
19
- Compared to MiniCPM1.0/MiniCPM2.0, MiniCPM3-4B has a more powerful and versatile skill set to enable more general usage. MiniCPM3-4B supports function call, along with code interpreter. Please refer to [Advanced Features](https://github.com/zh-zheng/minicpm?tab=readme-ov-file#%E8%BF%9B%E9%98%B6%E5%8A%9F%E8%83%BD) for usage guidelines.
20
 
21
  MiniCPM3-4B has a 32k context window. Equipped with LLMxMapReduce, MiniCPM3-4B can handle infinite context theoretically, without requiring huge amount of memory.
22
 
@@ -25,18 +29,14 @@ MiniCPM3-4B has a 32k context window. Equipped with LLMxMapReduce, MiniCPM3-4B c
25
  ```python
26
  from transformers import AutoModelForCausalLM, AutoTokenizer
27
  import torch
28
-
29
- path = "openbmb/MiniCPM3-4B-GPTQ-int4"
30
  device = "cuda"
31
-
32
  tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
33
  model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16, device_map=device, trust_remote_code=True)
34
-
35
  messages = [
36
  {"role": "user", "content": "推荐5个北京的景点。"},
37
  ]
38
  model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device)
39
-
40
  model_outputs = model.generate(
41
  model_inputs,
42
  max_new_tokens=1024,
@@ -44,11 +44,9 @@ model_outputs = model.generate(
44
  temperature=0.7,
45
  repetition_penalty=1.02
46
  )
47
-
48
  output_token_ids = [
49
  model_outputs[i][len(model_inputs[i]):] for i in range(len(model_inputs))
50
  ]
51
-
52
  responses = tokenizer.batch_decode(output_token_ids, skip_special_tokens=True)[0]
53
  print(responses)
54
  ```
@@ -57,23 +55,18 @@ print(responses)
57
  ```python
58
  from transformers import AutoTokenizer
59
  from vllm import LLM, SamplingParams
60
-
61
- model_name = "openbmb/MiniCPM3-4B-GPTQ-int4"
62
  prompt = [{"role": "user", "content": "推荐5个北京的景点。"}]
63
-
64
  tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
65
  input_text = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True)
66
-
67
  llm = LLM(
68
  model=model_name,
69
  trust_remote_code=True,
70
  tensor_parallel_size=1,
71
- quantization='gptq'
72
  )
73
  sampling_params = SamplingParams(top_p=0.7, temperature=0.7, max_tokens=1024, repetition_penalty=1.02)
74
-
75
  outputs = llm.generate(prompts=input_text, sampling_params=sampling_params)
76
-
77
  print(outputs[0].outputs[0].text)
78
  ```
79
 
@@ -270,7 +263,6 @@ print(outputs[0].outputs[0].text)
270
  </tr>
271
  </table>
272
 
273
-
274
  ## Statement
275
  * As a language model, MiniCPM3-4B generates content by learning from a vast amount of text.
276
  * However, it does not possess the ability to comprehend or express personal opinions or value judgments.
 
1
  ---
2
  license: apache-2.0
3
+ language:
4
+ - zh
5
+ - en
6
+ pipeline_tag: text-generation
7
  ---
8
  <div align="center">
9
  <img src="https://github.com/OpenBMB/MiniCPM/tree/main/assets/minicpm_logo.png" width="500em" ></img>
 
20
  ## Introduction
21
  MiniCPM3-4B is the 3rd generation of MiniCPM series. The overall performance of MiniCPM3-4B surpasses Phi-3.5-mini-Instruct and GPT-3.5-Turbo-0125, being comparable with many recent 7B~9B models.
22
 
23
+ Compared to MiniCPM1.0/MiniCPM2.0, MiniCPM3-4B has a more powerful and versatile skill set to enable more general usage. MiniCPM3-4B supports function call, along with code interpreter. Please refer to [Advanced Features](https://github.com/OpenBMB/MiniCPM/tree/main?tab=readme-ov-file#%E8%BF%9B%E9%98%B6%E5%8A%9F%E8%83%BD) for usage guidelines.
24
 
25
  MiniCPM3-4B has a 32k context window. Equipped with LLMxMapReduce, MiniCPM3-4B can handle infinite context theoretically, without requiring huge amount of memory.
26
 
 
29
  ```python
30
  from transformers import AutoModelForCausalLM, AutoTokenizer
31
  import torch
32
+ path = "openbmb/MiniCPM3-4B-GPTQ-Int4"
 
33
  device = "cuda"
 
34
  tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
35
  model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16, device_map=device, trust_remote_code=True)
 
36
  messages = [
37
  {"role": "user", "content": "推荐5个北京的景点。"},
38
  ]
39
  model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device)
 
40
  model_outputs = model.generate(
41
  model_inputs,
42
  max_new_tokens=1024,
 
44
  temperature=0.7,
45
  repetition_penalty=1.02
46
  )
 
47
  output_token_ids = [
48
  model_outputs[i][len(model_inputs[i]):] for i in range(len(model_inputs))
49
  ]
 
50
  responses = tokenizer.batch_decode(output_token_ids, skip_special_tokens=True)[0]
51
  print(responses)
52
  ```
 
55
  ```python
56
  from transformers import AutoTokenizer
57
  from vllm import LLM, SamplingParams
58
+ model_name = "openbmb/MiniCPM3-4B-GPTQ-Int4"
 
59
  prompt = [{"role": "user", "content": "推荐5个北京的景点。"}]
 
60
  tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
61
  input_text = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True)
 
62
  llm = LLM(
63
  model=model_name,
64
  trust_remote_code=True,
65
  tensor_parallel_size=1,
66
+ quantization='gptq',
67
  )
68
  sampling_params = SamplingParams(top_p=0.7, temperature=0.7, max_tokens=1024, repetition_penalty=1.02)
 
69
  outputs = llm.generate(prompts=input_text, sampling_params=sampling_params)
 
70
  print(outputs[0].outputs[0].text)
71
  ```
72
 
 
263
  </tr>
264
  </table>
265
 
 
266
  ## Statement
267
  * As a language model, MiniCPM3-4B generates content by learning from a vast amount of text.
268
  * However, it does not possess the ability to comprehend or express personal opinions or value judgments.