File size: 2,783 Bytes
d2127c2 4d5da94 d2127c2 68291b0 d2127c2 e31668a 12c5206 9ef6abe d2127c2 860fccc 81c848e 860fccc d2127c2 8c44cd5 d2127c2 860fccc afcb2b6 6543b61 afcb2b6 6543b61 afcb2b6 6543b61 8105cb9 6543b61 afcb2b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
license: apache-2.0
datasets:
- openbmb/RLAIF-V-Dataset
language:
- en
---
# Model Card for RLAIF-V
[GitHub ](https://github.com/RLHF-V/RLAIF-V) | [Paper](https://arxiv.org/abs/2405.17220)
**RLAIF-V-7B** is trained based on LLaVA 1.5 7B with the novel [RLAIF-V](https://github.com/RLHF-V/RLAIF-V) framework.
By aligning with human preference via large scale [AI feedback](https://huggingface.co/datasets/openbmb/RLAIF-V-Dataset), the model achieves **super GPT-4V trustworthiness**.
RLAIF-V maximally exploits the open-source feedback from two key perspectives, including high-quality feedback data and an online feedback learning algorithm.
## Model Details
### Key Features
* 📈 **Most trustworthy LLaVA 1.5**: By learning from open-source AI feedback, specifically, the feedback from LLaVA-NeXT-34B, RLAIF-V-7B achieves the best trustworthiness improvement on LLaVA-v1.5 compared to other hallucination reduction methods.
* 💪 **Maintaining Well Performance on General Abilities**: On benchmarks evaluating general capabilities (e.g. LLaVA Bench, MMStar), RLAIF-V-7B also exhibits good performance.
<p align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/6566e0c493e30c8a60048eb3/ypXZxb4HE-jDPJU9115bi.png" alt="fig1" width="90%"/>
</p>
### Examples
<p align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/6566e0c493e30c8a60048eb3/Hyu2Et5CQtDFmxaYHKdu-.png" alt="fig2-1" width="80%"/>
<img src="https://cdn-uploads.huggingface.co/production/uploads/6566e0c493e30c8a60048eb3/16mJpyH_-vnRfl8Ywfa6k.png" alt="fig2-1" width="80%"/>
</p>
### Model Description
- **Trained from model:** [llava-v1.5-7B](https://huggingface.co/liuhaotian/llava-v1.5-7b)
- **Trained on data:** [RLAIF-V-Dataset](https://huggingface.co/datasets/HaoyeZhang/RLAIF-V-Dataset)
## Usage
Please look at [GitHub](https://github.com/RLHF-V/RLAIF-V) for more details about usage.
## Citation
If you find our model/code/paper helpful, please consider cite our papers 📝:
```bibtex
@article{yu2023rlhf,
title={Rlhf-v: Towards trustworthy mllms via behavior alignment from fine-grained correctional human feedback},
author={Yu, Tianyu and Yao, Yuan and Zhang, Haoye and He, Taiwen and Han, Yifeng and Cui, Ganqu and Hu, Jinyi and Liu, Zhiyuan and Zheng, Hai-Tao and Sun, Maosong and others},
journal={arXiv preprint arXiv:2312.00849},
year={2023}
}
@article{yu2024rlaifv,
title={RLAIF-V: Aligning MLLMs through Open-Source AI Feedback for Super GPT-4V Trustworthiness},
author={Yu, Tianyu and Zhang, Haoye and Yao, Yuan and Dang, Yunkai and Chen, Da and Lu, Xiaoman and Cui, Ganqu and He, Taiwen and Liu, Zhiyuan and Chua, Tat-Seng and Sun, Maosong},
journal={arXiv preprint arXiv:2405.17220},
year={2024},
}
``` |