|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
import warnings |
|
from typing import Any, Callable, Dict, List, Optional, Union, Tuple |
|
import numpy as np |
|
|
|
import torch |
|
from torch.utils.data.dataloader import default_collate |
|
from packaging import version |
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers.configuration_utils import FrozenDict |
|
from diffusers.image_processor import VaeImageProcessor |
|
from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin |
|
from diffusers.models import AutoencoderKL, UNet2DConditionModel |
|
from diffusers.schedulers import KarrasDiffusionSchedulers |
|
from diffusers.utils import ( |
|
deprecate, |
|
is_accelerate_available, |
|
is_accelerate_version, |
|
logging, |
|
randn_tensor, |
|
replace_example_docstring, |
|
) |
|
from diffusers.pipeline_utils import DiffusionPipeline |
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker |
|
|
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput |
|
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import rescale_noise_cfg, StableDiffusionPipeline |
|
from .modeling_cpmbee import CpmBeeModel |
|
from .tokenization_viscpmbee import VisCpmBeeTokenizer |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
def pad(orig_items, key, max_length=None, padding_value=0, padding_side="left"): |
|
items = [] |
|
if isinstance(orig_items[0][key], list): |
|
assert isinstance(orig_items[0][key][0], torch.Tensor) |
|
for it in orig_items: |
|
for tr in it[key]: |
|
items.append({key: tr}) |
|
else: |
|
assert isinstance(orig_items[0][key], torch.Tensor) |
|
items = orig_items |
|
|
|
batch_size = len(items) |
|
shape = items[0][key].shape |
|
dim = len(shape) |
|
assert dim <= 3 |
|
if max_length is None: |
|
max_length = 0 |
|
max_length = max(max_length, max(item[key].shape[-1] for item in items)) |
|
min_length = min(item[key].shape[-1] for item in items) |
|
dtype = items[0][key].dtype |
|
|
|
if dim == 1: |
|
return torch.cat([item[key] for item in items], dim=0) |
|
elif dim == 2: |
|
if max_length == min_length: |
|
return torch.cat([item[key] for item in items], dim=0) |
|
tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value |
|
else: |
|
tensor = torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype) + padding_value |
|
|
|
for i, item in enumerate(items): |
|
if dim == 2: |
|
if padding_side == "left": |
|
tensor[i, -len(item[key][0]):] = item[key][0].clone() |
|
else: |
|
tensor[i, : len(item[key][0])] = item[key][0].clone() |
|
elif dim == 3: |
|
if padding_side == "left": |
|
tensor[i, -len(item[key][0]):, :] = item[key][0].clone() |
|
else: |
|
tensor[i, : len(item[key][0]), :] = item[key][0].clone() |
|
|
|
return tensor |
|
|
|
|
|
class CPMBeeCollater: |
|
""" |
|
针对 cpmbee 输入数据 collate, 对应 cpm-live 的 _MixedDatasetBatchPacker |
|
目前利用 torch 的原生 Dataloader 不太适合改造 in-context-learning |
|
并且原来实现为了最大化提高有效 token 比比例, 会有一个 best_fit 操作, 这个目前也不支持 |
|
todo: 重写一下 Dataloader or BatchPacker |
|
""" |
|
|
|
def __init__(self, tokenizer: VisCpmBeeTokenizer, max_len): |
|
self.tokenizer = tokenizer |
|
self._max_length = max_len |
|
self.pad_keys = ['input_ids', 'input_id_subs', 'context', 'segment_ids', 'segment_rel_offset', |
|
'segment_rel', 'sample_ids', 'num_segments'] |
|
|
|
def __call__(self, batch): |
|
batch_size = len(batch) |
|
|
|
tgt = np.full((batch_size, self._max_length), -100, dtype=np.int32) |
|
|
|
span = np.zeros((batch_size, self._max_length), dtype=np.int32) |
|
length = np.zeros((batch_size,), dtype=np.int32) |
|
|
|
batch_ext_table_map: Dict[Tuple[int, int], int] = {} |
|
batch_ext_table_ids: List[int] = [] |
|
batch_ext_table_sub: List[int] = [] |
|
raw_data_list: List[Any] = [] |
|
|
|
for i in range(batch_size): |
|
instance_length = batch[i]['input_ids'][0].shape[0] |
|
length[i] = instance_length |
|
raw_data_list.extend(batch[i]['raw_data']) |
|
|
|
for j in range(instance_length): |
|
idx, idx_sub = batch[i]['input_ids'][0, j], batch[i]['input_id_subs'][0, j] |
|
tgt_idx = idx |
|
if idx_sub > 0: |
|
|
|
if (idx, idx_sub) not in batch_ext_table_map: |
|
batch_ext_table_map[(idx, idx_sub)] = len(batch_ext_table_map) |
|
batch_ext_table_ids.append(idx) |
|
batch_ext_table_sub.append(idx_sub) |
|
tgt_idx = batch_ext_table_map[(idx, idx_sub)] + self.tokenizer.vocab_size |
|
if j > 1 and batch[i]['context'][0, j - 1] == 0: |
|
if idx != self.tokenizer.bos_id: |
|
tgt[i, j - 1] = tgt_idx |
|
else: |
|
tgt[i, j - 1] = self.tokenizer.eos_id |
|
if batch[i]['context'][0, instance_length - 1] == 0: |
|
tgt[i, instance_length - 1] = self.tokenizer.eos_id |
|
|
|
if len(batch_ext_table_map) == 0: |
|
|
|
batch_ext_table_ids.append(0) |
|
batch_ext_table_sub.append(1) |
|
|
|
|
|
if 'pixel_values' in batch[0]: |
|
data = {'pixel_values': default_collate([i['pixel_values'] for i in batch])} |
|
else: |
|
data = {} |
|
|
|
|
|
if 'image_bound' in batch[0]: |
|
data['image_bound'] = default_collate([i['image_bound'] for i in batch]) |
|
|
|
|
|
for key in self.pad_keys: |
|
data[key] = pad(batch, key, max_length=self._max_length, padding_value=0, padding_side='right') |
|
|
|
data['context'] = data['context'] > 0 |
|
data['length'] = torch.from_numpy(length) |
|
data['span'] = torch.from_numpy(span) |
|
data['target'] = torch.from_numpy(tgt) |
|
data['ext_table_ids'] = torch.from_numpy(np.array(batch_ext_table_ids)) |
|
data['ext_table_sub'] = torch.from_numpy(np.array(batch_ext_table_sub)) |
|
data['raw_data'] = raw_data_list |
|
|
|
return data |
|
|
|
|
|
class VisCPMPaintBeePipeline(StableDiffusionPipeline): |
|
_optional_components = ["safety_checker", "feature_extractor"] |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CpmBeeModel, |
|
tokenizer: VisCpmBeeTokenizer, |
|
unet: UNet2DConditionModel, |
|
scheduler: KarrasDiffusionSchedulers, |
|
safety_checker: StableDiffusionSafetyChecker, |
|
feature_extractor: CLIPImageProcessor, |
|
requires_safety_checker: bool = True, |
|
): |
|
super().__init__( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
safety_checker=safety_checker, |
|
feature_extractor=feature_extractor, |
|
requires_safety_checker=requires_safety_checker |
|
) |
|
|
|
def build_input( |
|
self, |
|
prompt: str, |
|
negative_prompt: Optional[str] = None, |
|
image_size: int = 512 |
|
): |
|
data_input = {'caption': prompt, 'objects': ''} |
|
( |
|
input_ids, |
|
input_id_subs, |
|
context, |
|
segment_ids, |
|
segment_rel, |
|
n_segments, |
|
table_states, |
|
image_bound |
|
) = self.tokenizer.convert_data_to_id(data=data_input, shuffle_answer=False, max_depth=8) |
|
sample_ids = np.zeros(input_ids.shape, dtype=np.int32) |
|
segment_rel_offset = np.zeros(input_ids.shape, dtype=np.int32) |
|
num_segments = np.full(input_ids.shape, n_segments, dtype=np.int32) |
|
data = { |
|
'pixel_values': torch.zeros(3, image_size, image_size).unsqueeze(0), |
|
'input_ids': torch.from_numpy(input_ids).unsqueeze(0), |
|
'input_id_subs': torch.from_numpy(input_id_subs).unsqueeze(0), |
|
'context': torch.from_numpy(context).unsqueeze(0), |
|
'segment_ids': torch.from_numpy(segment_ids).unsqueeze(0), |
|
'segment_rel_offset': torch.from_numpy(segment_rel_offset).unsqueeze(0), |
|
'segment_rel': torch.from_numpy(segment_rel).unsqueeze(0), |
|
'sample_ids': torch.from_numpy(sample_ids).unsqueeze(0), |
|
'num_segments': torch.from_numpy(num_segments).unsqueeze(0), |
|
'image_bound': image_bound, |
|
'raw_data': prompt, |
|
} |
|
|
|
uncond_data_input = { |
|
'caption': "" if negative_prompt is None else negative_prompt, |
|
'objects': '' |
|
} |
|
( |
|
input_ids, |
|
input_id_subs, |
|
context, |
|
segment_ids, |
|
segment_rel, |
|
n_segments, |
|
table_states, |
|
image_bound |
|
) = self.tokenizer.convert_data_to_id(data=uncond_data_input, shuffle_answer=False, max_depth=8) |
|
sample_ids = np.zeros(input_ids.shape, dtype=np.int32) |
|
segment_rel_offset = np.zeros(input_ids.shape, dtype=np.int32) |
|
num_segments = np.full(input_ids.shape, n_segments, dtype=np.int32) |
|
uncond_data = { |
|
'pixel_values': torch.zeros(3, image_size, image_size).unsqueeze(0), |
|
'input_ids': torch.from_numpy(input_ids).unsqueeze(0), |
|
'input_id_subs': torch.from_numpy(input_id_subs).unsqueeze(0), |
|
'context': torch.from_numpy(context).unsqueeze(0), |
|
'segment_ids': torch.from_numpy(segment_ids).unsqueeze(0), |
|
'segment_rel_offset': torch.from_numpy(segment_rel_offset).unsqueeze(0), |
|
'segment_rel': torch.from_numpy(segment_rel).unsqueeze(0), |
|
'sample_ids': torch.from_numpy(sample_ids).unsqueeze(0), |
|
'num_segments': torch.from_numpy(num_segments).unsqueeze(0), |
|
'image_bound': image_bound, |
|
'raw_data': "" if negative_prompt is None else negative_prompt, |
|
} |
|
packer = CPMBeeCollater( |
|
tokenizer=self.tokenizer, |
|
max_len=max(data['input_ids'].size(-1), uncond_data['input_ids'].size(-1)) |
|
) |
|
data = packer([data]) |
|
uncond_data = packer([uncond_data]) |
|
return data, uncond_data |
|
|
|
def _encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt=None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
lora_scale: Optional[float] = None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
device: (`torch.device`): |
|
torch device |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
lora_scale (`float`, *optional*): |
|
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. |
|
""" |
|
|
|
|
|
if lora_scale is not None and isinstance(self, LoraLoaderMixin): |
|
self._lora_scale = lora_scale |
|
|
|
data, uncond_data = self.build_input(prompt, negative_prompt, image_size=512) |
|
for key, value in data.items(): |
|
if isinstance(value, torch.Tensor): |
|
data[key] = value.to(self.device) |
|
for key, value in uncond_data.items(): |
|
if isinstance(value, torch.Tensor): |
|
uncond_data[key] = value.to(self.device) |
|
|
|
batch, seq_length = data['input_ids'].size() |
|
dtype, device = data['input_ids'].dtype, data['input_ids'].device |
|
data['position'] = torch.arange(seq_length, dtype=dtype, device=device).repeat(batch, 1) |
|
|
|
batch, seq_length = uncond_data['input_ids'].size() |
|
dtype, device = uncond_data['input_ids'].dtype, uncond_data['input_ids'].device |
|
uncond_data['position'] = torch.arange(seq_length, dtype=dtype, device=device).repeat(batch, 1) |
|
|
|
with torch.no_grad(): |
|
|
|
_, hidden_states = self.text_encoder( |
|
input_ids=data['input_ids'], |
|
input_id_sub=data['input_id_subs'], |
|
position=data['position'], |
|
|
|
context=data['context'], |
|
sample_ids=data['sample_ids'], |
|
num_segments=data['num_segments'], |
|
segment=data['segment_ids'], |
|
segment_rel_offset=data['segment_rel_offset'], |
|
segment_rel=data['segment_rel'], |
|
|
|
|
|
|
|
|
|
) |
|
|
|
with torch.no_grad(): |
|
|
|
_, uncond_hidden_states = self.text_encoder( |
|
input_ids=uncond_data['input_ids'], |
|
input_id_sub=uncond_data['input_id_subs'], |
|
position=uncond_data['position'], |
|
|
|
context=uncond_data['context'], |
|
sample_ids=uncond_data['sample_ids'], |
|
num_segments=uncond_data['num_segments'], |
|
segment=uncond_data['segment_ids'], |
|
segment_rel_offset=uncond_data['segment_rel_offset'], |
|
segment_rel=uncond_data['segment_rel'], |
|
|
|
|
|
|
|
|
|
) |
|
|
|
text_hidden_states, uncond_text_hidden_states = hidden_states, uncond_hidden_states |
|
if self.text_encoder.trans_block is not None: |
|
text_hidden_states = self.text_encoder.trans_block(text_hidden_states) |
|
uncond_text_hidden_states = self.text_encoder.trans_block(uncond_text_hidden_states) |
|
bs_embed, seq_len, _ = text_hidden_states.shape |
|
text_hidden_states = text_hidden_states.repeat(1, num_images_per_prompt, 1) |
|
text_hidden_states = text_hidden_states.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
bs_embed, seq_len, _ = uncond_text_hidden_states.shape |
|
uncond_text_hidden_states = uncond_text_hidden_states.repeat(1, num_images_per_prompt, 1) |
|
uncond_text_hidden_states = uncond_text_hidden_states.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
prompt_embeds = torch.cat([uncond_text_hidden_states, text_hidden_states]) |
|
return prompt_embeds |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def decode_latents(self, latents): |
|
warnings.warn( |
|
"The decode_latents method is deprecated and will be removed in a future version. Please" |
|
" use VaeImageProcessor instead", |
|
FutureWarning, |
|
) |
|
latents = 1 / self.vae.config.scaling_factor * latents |
|
image = self.vae.decode(latents, return_dict=False)[0] |
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
|
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy() |
|
return image |
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
height, |
|
width, |
|
callback_steps, |
|
negative_prompt=None, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
): |
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if (callback_steps is None) or ( |
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) |
|
): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
|
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): |
|
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
guidance_rescale: float = 0.0, |
|
): |
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
|
|
self.check_inputs( |
|
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds |
|
) |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
text_encoder_lora_scale = ( |
|
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None |
|
) |
|
|
|
prompt_embeds = self._encode_prompt( |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
lora_scale=text_encoder_lora_scale, |
|
) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
num_channels_latents = self.unet.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
if do_classifier_free_guidance and guidance_rescale > 0.0: |
|
|
|
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
callback(i, t, latents) |
|
|
|
if not output_type == "latent": |
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] |
|
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) |
|
else: |
|
image = latents |
|
has_nsfw_concept = None |
|
|
|
if has_nsfw_concept is None: |
|
do_denormalize = [True] * image.shape[0] |
|
else: |
|
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] |
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) |
|
|
|
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: |
|
self.final_offload_hook.offload() |
|
|
|
if not return_dict: |
|
return (image, has_nsfw_concept) |
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) |
|
|