|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch CpmBee model.""" |
|
import copy |
|
import math |
|
from collections import UserDict |
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from transformers.generation.beam_search import BeamHypotheses, BeamSearchScorer |
|
from transformers.generation.streamers import BaseStreamer |
|
from transformers.generation.utils import ( |
|
GenerationConfig, |
|
LogitsProcessorList, |
|
StoppingCriteriaList, |
|
dist, |
|
inspect, |
|
is_deepspeed_zero3_enabled, |
|
warnings, |
|
) |
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, ModelOutput |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging |
|
from .configuration_cpmbee import CpmBeeConfig |
|
from .tokenization_cpmbee import CpmBeeTokenizer |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CHECKPOINT_FOR_DOC = "openbmb/cpm-bee-10b" |
|
_CONFIG_FOR_DOC = "CpmBeeConfig" |
|
|
|
CPMBEE_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"openbmb/cpm-bee-10b", |
|
"openbmb/cpm-bee-5b", |
|
"openbmb/cpm-bee-2b", |
|
"openbmb/cpm-bee-1b", |
|
|
|
] |
|
|
|
|
|
class CpmBeeLinear(nn.Linear): |
|
def __init__(self, dim_in, dim_out, dtype): |
|
""" |
|
Construct a linear for CPMBee. It contains a scale operation. |
|
""" |
|
super().__init__(dim_in, dim_out, bias=False) |
|
self.dim_in = self.in_features = dim_in |
|
self.dim_out = self.out_features = dim_out |
|
|
|
self.weight = torch.nn.parameter.Parameter(torch.empty((dim_out, dim_in), dtype=dtype)) |
|
|
|
def forward(self, x: torch.Tensor): |
|
""" |
|
Args: |
|
x (`torch.Tensor` of shape `(batch, seq_len, dim_in)`): The input of linear layer |
|
Returns: |
|
`torch.Tensor` of shape `(batch, seq_len, dim_out)`: The output of the linear transform y. |
|
""" |
|
x = nn.functional.linear(x, self.weight) |
|
x = x / math.sqrt(self.dim_in) |
|
return x |
|
|
|
|
|
class CpmBeeLayerNorm(nn.Module): |
|
""" |
|
We use Root Mean Square (RMS) Layer Normalization, please see https://arxiv.org/abs/1910.07467 for details." |
|
""" |
|
|
|
def __init__(self, config: CpmBeeConfig): |
|
super().__init__() |
|
|
|
self.eps = config.eps |
|
self.dim_norm = config.hidden_size |
|
self.weight = nn.Parameter(torch.empty(config.hidden_size, dtype=config.torch_dtype)) |
|
|
|
def forward(self, hidden_states: torch.Tensor): |
|
""" |
|
Args: |
|
hidden_states (`torch.Tensor` of shape `(batch, seq_len, dim_in)`) |
|
""" |
|
if hidden_states.size(-1) != self.dim_norm: |
|
raise AssertionError("hidden_states.size(-1) != self.dim_norm") |
|
old_dtype = hidden_states.dtype |
|
variance = hidden_states.to(torch.float32).pow(2).mean(dim=-1, keepdim=True) |
|
hidden_states = (hidden_states * torch.rsqrt(variance + self.eps)).to(old_dtype) * self.weight |
|
return hidden_states |
|
|
|
|
|
class CpmBeeAttention(nn.Module): |
|
def __init__(self, config: CpmBeeConfig): |
|
super().__init__() |
|
self.dim_model = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.dim_head = config.dim_head |
|
|
|
self.project_q = CpmBeeLinear(self.dim_model, self.num_heads * self.dim_head, dtype=config.torch_dtype) |
|
self.project_k = CpmBeeLinear(self.dim_model, self.num_heads * self.dim_head, dtype=config.torch_dtype) |
|
self.project_v = CpmBeeLinear(self.dim_model, self.num_heads * self.dim_head, dtype=config.torch_dtype) |
|
|
|
self.attention_out = CpmBeeLinear(self.num_heads * self.dim_head, self.dim_model, dtype=config.torch_dtype) |
|
|
|
self.softmax = torch.nn.Softmax(dim=-1) |
|
|
|
if config.dropout_p is not None: |
|
self.dropout = torch.nn.Dropout(p=config.dropout_p) |
|
else: |
|
self.dropout = None |
|
|
|
def forward( |
|
self, |
|
hidden_q: torch.Tensor, |
|
hidden_kv: torch.Tensor, |
|
attention_mask: torch.BoolTensor, |
|
position_bias: torch.Tensor, |
|
output_attentions: Optional[bool] = False, |
|
past_key_values: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
use_cache: Optional[bool] = None, |
|
): |
|
""" |
|
Args: |
|
hidden_q (`torch.Tensor`): |
|
Input of transformer block(self-attention block). It can be the raw embedding of a batch of sequences. |
|
hidden_kv (`torch.Tensor` of shape `(batch, len_k, dim_model)`)): |
|
Tensor *key_value* and *query* of shape `(batch, len_k, dim_model)` |
|
attention_mask (`torch.Tensor` of shape `(batch, len_seq, len_seq)`): |
|
Avoid invalid areas to participate in the calculation of self-attention. |
|
position_bias (`torch.Tensor` of shape `(batch, len_seq, len_seq)`): |
|
Provide positional information to self-attention block. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. |
|
past_key_values (`Tuple[torch.Tensor, torch.Tensor]`, *optional*): |
|
Cached past key and value projection states. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
""" |
|
batch_size = hidden_q.size(0) |
|
len_q = hidden_q.size(1) |
|
len_k = hidden_kv.size(1) |
|
|
|
query = self.project_q(hidden_q) |
|
key = self.project_k(hidden_kv) |
|
value = self.project_v(hidden_kv) |
|
|
|
query = query.view(batch_size, len_q, self.num_heads, self.dim_head).permute(0, 2, 1, 3) |
|
key = key.view(batch_size, len_k, self.num_heads, self.dim_head).permute(0, 2, 1, 3) |
|
value = value.view(batch_size, len_k, self.num_heads, self.dim_head).permute(0, 2, 1, 3) |
|
|
|
if past_key_values is not None: |
|
key = torch.cat([past_key_values[0], key], dim=-2) |
|
value = torch.cat([past_key_values[1], value], dim=-2) |
|
len_k = key.size(-2) |
|
|
|
|
|
score = torch.matmul(query, key.transpose(-1, -2)) / math.sqrt(self.dim_head) |
|
score = score + position_bias |
|
|
|
score = torch.masked_fill( |
|
score, |
|
attention_mask.view(batch_size, 1, len_q, len_k) == torch.tensor(False), |
|
torch.scalar_tensor(float("-inf"), device=score.device, dtype=score.dtype), |
|
) |
|
score = self.softmax(score) |
|
|
|
score = torch.masked_fill( |
|
score, |
|
attention_mask.view(batch_size, 1, len_q, len_k) == torch.tensor(False), |
|
torch.scalar_tensor(0, device=score.device, dtype=score.dtype), |
|
) |
|
if output_attentions: |
|
attn_weights = score |
|
else: |
|
attn_weights = None |
|
|
|
if self.dropout is not None: |
|
score = self.dropout(score) |
|
|
|
|
|
score = torch.matmul(score, value) |
|
|
|
score = score.view(batch_size, self.num_heads, len_q, self.dim_head).permute(0, 2, 1, 3) |
|
score = score.contiguous().view(batch_size, len_q, self.num_heads * self.dim_head) |
|
|
|
score = self.attention_out(score) |
|
|
|
past_key_values = None |
|
if use_cache: |
|
past_key_values = (key, value) |
|
|
|
return score, attn_weights, past_key_values |
|
|
|
|
|
class CpmBeeSelfAttentionBlock(nn.Module): |
|
def __init__(self, config: CpmBeeConfig): |
|
super().__init__() |
|
self.layernorm_before_attention = CpmBeeLayerNorm(config) |
|
self.self_attention = CpmBeeAttention(config) |
|
if config.dropout_p: |
|
self.dropout = torch.nn.Dropout(config.dropout_p) |
|
else: |
|
self.dropout = None |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
position_bias: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = False, |
|
past_key_values: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
use_cache: Optional[bool] = None, |
|
): |
|
""" |
|
Args: |
|
hidden_states (`torch.Tensor` of shape `(batch, len_seq, dim_model)`): |
|
Input of transformer block(self-attention block). It can be the raw embedding of a batch of sequences. |
|
attention_mask (`torch.Tensor` of shape `(batch, len_seq, len_seq)`): |
|
Avoid invalid areas to participate in the calculation of self-attention. |
|
position_bias (`torch.Tensor` of shape `(batch, len_seq, len_seq)`): |
|
Provide positional information to self-attention block. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. |
|
past_key_values (`Tuple(torch.FloatTensor)`, *optional*): |
|
Cached past key and value projection states. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
""" |
|
outputs = self.layernorm_before_attention(hidden_states) |
|
outputs = self.self_attention( |
|
outputs, outputs, attention_mask, position_bias, output_attentions, past_key_values, use_cache |
|
) |
|
|
|
outputs, attn_weights, current_key_value = outputs |
|
|
|
if self.dropout is not None: |
|
outputs = self.dropout(outputs) |
|
hidden_states = (hidden_states + outputs) / 1.05 |
|
|
|
return hidden_states, attn_weights, current_key_value |
|
|
|
|
|
class CpmBeeDenseGatedACT(nn.Module): |
|
def __init__(self, config: CpmBeeConfig): |
|
super().__init__() |
|
self.w_0 = CpmBeeLinear(config.hidden_size, config.dim_ff, dtype=config.torch_dtype) |
|
self.w_1 = CpmBeeLinear(config.hidden_size, config.dim_ff, dtype=config.torch_dtype) |
|
self.act = torch.nn.GELU() |
|
|
|
def forward(self, hidden_states: torch.Tensor): |
|
"""Transform an input tensor from one feature space to another via a nonlinear operation |
|
|
|
Args: |
|
hidden_states (`torch.Tensor` of shape `(batch, seq_len, dim_in)`) |
|
""" |
|
gate_score = self.act(self.w_0(hidden_states)) |
|
hidden_states = self.w_1(hidden_states) |
|
|
|
hidden_states = gate_score * hidden_states |
|
return hidden_states |
|
|
|
|
|
class CpmBeeFeedForward(nn.Module): |
|
def __init__(self, config: CpmBeeConfig): |
|
super().__init__() |
|
self.w_in = CpmBeeDenseGatedACT(config) |
|
if config.dropout_p is not None: |
|
self.dropout = torch.nn.Dropout(config.dropout_p) |
|
else: |
|
self.dropout = None |
|
|
|
self.w_out = CpmBeeLinear(config.dim_ff, config.hidden_size, dtype=config.torch_dtype) |
|
|
|
def forward(self, hidden_states: torch.Tensor): |
|
""" |
|
Args: |
|
hidden_states (`torch.Tensor` of shape `(batch, seq_len, dim_in)`) |
|
""" |
|
hidden_states = self.w_in(hidden_states) |
|
|
|
if self.dropout is not None: |
|
hidden_states = self.dropout(hidden_states) |
|
|
|
hidden_states = self.w_out(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class CpmBeeFFNBlock(nn.Module): |
|
def __init__(self, config: CpmBeeConfig): |
|
super().__init__() |
|
self.layernorm_before_ffn = CpmBeeLayerNorm(config) |
|
self.ffn = CpmBeeFeedForward(config) |
|
if config.dropout_p: |
|
self.dropout = torch.nn.Dropout(config.dropout_p) |
|
else: |
|
self.dropout = None |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
): |
|
""" |
|
Args: |
|
hidden_states (`torch.Tensor` of shape `(batch, len_seq, dim_model)`): |
|
Hidden states before feed forward layer. |
|
""" |
|
ln_outputs = self.layernorm_before_ffn(hidden_states) |
|
outputs = self.ffn(ln_outputs) |
|
if self.dropout is not None: |
|
outputs = self.dropout(outputs) |
|
hidden_states = (hidden_states + outputs) / 1.05 |
|
return hidden_states |
|
|
|
|
|
class CpmBeeTransformerBlock(nn.Module): |
|
def __init__(self, config: CpmBeeConfig, mask_att: bool = False, mask_ffn: bool = False): |
|
super().__init__() |
|
self.mask_att = mask_att |
|
self.mask_ffn = mask_ffn |
|
|
|
if not self.mask_att: |
|
self.self_att = CpmBeeSelfAttentionBlock(config) |
|
if not self.mask_ffn: |
|
self.ffn = CpmBeeFFNBlock(config) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
position_bias: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = False, |
|
past_key_values: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
use_cache: Optional[bool] = None, |
|
): |
|
""" |
|
Args: |
|
hidden_states (`torch.Tensor`): |
|
Input to the layer of shape `(batch, seq_len, dim_model)` |
|
attention_mask (`torch.Tensor`): |
|
Avoid invalid areas to participate in the calculation of shape `(batch, seq_len, seq_len)` |
|
position_bias (`torch.Tensor`): |
|
Provides position information to attention mechanism of shape `(num_heads, seq_len, seq_len)` |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. |
|
past_key_values (`Tuple[torch.Tensor, torch.Tensor])`, *optional*): |
|
Cached past key and value projection states |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
""" |
|
if not self.mask_att: |
|
hidden_states = self.self_att( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_bias=position_bias, |
|
output_attentions=output_attentions, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
) |
|
|
|
hidden_states, attn_weights, current_key_value = hidden_states |
|
else: |
|
attn_weights, current_key_value = None, (None, None) |
|
|
|
if not self.mask_ffn: |
|
hidden_states = self.ffn(hidden_states) |
|
|
|
return hidden_states, attn_weights, current_key_value |
|
|
|
|
|
class CpmBeeEncoder(nn.Module): |
|
def __init__(self, config: CpmBeeConfig): |
|
super().__init__() |
|
self.num_layers = config.num_hidden_layers |
|
if config.mask_modules is not None: |
|
assert len(config.mask_modules) == self.num_layers, "The total number of masks should equal to num_layers" |
|
for mask_module in config.mask_modules: |
|
assert len(mask_module) == 2, "For encoder, each mask should be (mask_att, mask_ffn)" |
|
else: |
|
config.mask_modules = [(False, False)] * self.num_layers |
|
|
|
self.layers = nn.ModuleList( |
|
[ |
|
CpmBeeTransformerBlock( |
|
config, mask_att=config.mask_modules[ith][0], mask_ffn=config.mask_modules[ith][1] |
|
) |
|
for ith in range(self.num_layers) |
|
] |
|
) |
|
|
|
self.output_layernorm = CpmBeeLayerNorm(config) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
position_bias: torch.Tensor, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
past_key_values: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
use_cache: Optional[bool] = None, |
|
): |
|
""" |
|
Args: |
|
hidden_states (`torch.Tensor`): |
|
Input to the layer of shape `(batch, seq_len, dim_model)` |
|
attention_mask (`torch.Tensor`): |
|
Avoid invalid areas to participate in the calculation of shape `(batch, seq_len, seq_len)` |
|
position_bias (`torch.Tensor`): |
|
Provides position information to attention mechanism of shape `(num_heads, seq_len, seq_len)` |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. |
|
past_key_values (`Tuple[torch.Tensor, torch.Tensor])`, *optional*): |
|
Cached past key and value projection states |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
""" |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
current_key_values = () if use_cache else None |
|
|
|
for i, layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
layer_outputs = layer( |
|
hidden_states, |
|
attention_mask, |
|
position_bias, |
|
output_attentions=output_attentions, |
|
past_key_values=past_key_values[i] if past_key_values else None, |
|
use_cache=use_cache, |
|
) |
|
hidden_states, attn_weights, current_key_value = layer_outputs |
|
if output_attentions: |
|
all_self_attns += (attn_weights,) |
|
if current_key_values is not None: |
|
current_key_values = current_key_values + (current_key_value,) |
|
|
|
hidden_states = self.output_layernorm(hidden_states) |
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
return hidden_states, current_key_values, all_hidden_states, all_self_attns |
|
|
|
|
|
class CpmBeeBucketPositionBias(nn.Module): |
|
def __init__(self, config: CpmBeeConfig) -> None: |
|
super().__init__() |
|
|
|
self.num_heads = config.num_attention_heads |
|
self.num_buckets = config.position_bias_num_buckets |
|
self.num_segment_bucket = config.position_bias_num_segment_buckets |
|
self.max_distance = config.position_bias_max_distance |
|
|
|
self.relative_attention_bias = nn.Parameter( |
|
torch.empty( |
|
config.position_bias_num_buckets + config.position_bias_num_segment_buckets, |
|
config.num_attention_heads, |
|
dtype=config.torch_dtype, |
|
), |
|
) |
|
|
|
def forward(self, query_pos: torch.Tensor, key_pos: torch.Tensor, rel_buckets: torch.Tensor): |
|
with torch.no_grad(): |
|
batch = key_pos.size(0) |
|
keylen = key_pos.size(1) |
|
querylen = query_pos.size(1) |
|
|
|
if key_pos.size(0) != query_pos.size(0): |
|
raise AssertionError( |
|
f"key_pos.size(0) should be equal to query_pos.size(0), but got {key_pos.size(0)} and {query_pos.size(0)}!" |
|
) |
|
if rel_buckets.size(0) != batch: |
|
raise AssertionError( |
|
f"rel_buckets.size(0) should be equal to batch, but got {rel_buckets.size(0)} and {batch}!" |
|
) |
|
if rel_buckets.size(1) != querylen: |
|
raise AssertionError( |
|
f"rel_buckets.size(1) should be equal to querylen, but got {rel_buckets.size(1)} and {querylen}!" |
|
) |
|
if rel_buckets.size(2) != keylen: |
|
raise AssertionError( |
|
f"rel_buckets.size(2) should be equal to keylen, but got {rel_buckets.size(2)} and {keylen}!" |
|
) |
|
|
|
relative_position_bucket = rel_buckets - 1 + self.num_buckets |
|
|
|
inner_segment_bucket = self._position_bucket( |
|
key_pos[..., None, :] - query_pos[..., :, None], |
|
num_buckets=self.num_buckets, |
|
max_distance=self.max_distance, |
|
) |
|
relative_position_bucket = torch.where( |
|
rel_buckets == 0, |
|
inner_segment_bucket, |
|
relative_position_bucket, |
|
) |
|
|
|
embeds = nn.functional.embedding(relative_position_bucket, self.relative_attention_bias) |
|
embeds = embeds.permute(0, 3, 1, 2).contiguous() |
|
return embeds |
|
|
|
def _position_bucket(self, relative_position, num_buckets=32, max_distance=128): |
|
relative_buckets = 0 |
|
num_buckets //= 2 |
|
relative_buckets = (relative_position > 0).to(torch.int32) * num_buckets |
|
relative_position = torch.abs(relative_position) |
|
max_exact = num_buckets // 2 |
|
is_small = relative_position < max_exact |
|
relative_postion_if_large = max_exact + ( |
|
torch.log(relative_position.float() / max_exact) |
|
/ math.log(max_distance / max_exact) |
|
* (num_buckets - max_exact) |
|
).to(torch.int32) |
|
relative_postion_if_large = torch.min( |
|
relative_postion_if_large, |
|
torch.full_like(relative_postion_if_large, num_buckets - 1), |
|
) |
|
relative_buckets += torch.where(is_small, relative_position.to(torch.int32), relative_postion_if_large) |
|
return relative_buckets |
|
|
|
|
|
|
|
class CpmBeeOutput(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) |
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states + input_tensor) |
|
return hidden_states |
|
|
|
|
|
class CpmBeeRotaryEmbedding(nn.Module): |
|
""" |
|
RotaryEmbedding embeds the unk token and special token. It will embeds the "...<mask>...<mask>...<unk>...<unk>..." |
|
to "...<mask_0>...<mask_1>...<unk_0>...<unk_1>..."" to help model to specify different special tokens and unk |
|
tokens. |
|
""" |
|
|
|
def __init__(self, config: CpmBeeConfig): |
|
super().__init__() |
|
inv_freq = 1.0 / (10000 ** (torch.arange(0, config.hidden_size, 2, dtype=torch.float32) / config.hidden_size)) |
|
self.distance_scale = config.distance_scale |
|
self.dtype = config.torch_dtype |
|
self.inv_freq = inv_freq.to(config.torch_dtype) |
|
|
|
def forward(self, x: torch.Tensor, x_pos: torch.Tensor): |
|
inv_freq = self.inv_freq.to(device=x.device, dtype=x.dtype) |
|
|
|
x_pos = x_pos * self.distance_scale |
|
freqs = x_pos[..., None] * inv_freq[None, :] |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
emb_cos = emb.cos() |
|
emb_sin = emb.sin() |
|
|
|
rotate_x = torch.cat([-x[..., x.size(-1) // 2 :], x[..., : x.size(-1) // 2]], dim=-1) |
|
|
|
return x * emb_cos + rotate_x * emb_sin |
|
|
|
|
|
class CpmBeeEmbeddingExt(nn.Embedding): |
|
""" |
|
Contains a RotaryEmbedding. |
|
""" |
|
|
|
def __init__(self, config: CpmBeeConfig): |
|
super().__init__(config.vocab_size, config.hidden_size, dtype=config.torch_dtype) |
|
self.dim_model = config.hidden_size |
|
self.rotary_emb = CpmBeeRotaryEmbedding(config) |
|
|
|
def forward(self, ids: torch.Tensor, ids_sub: torch.Tensor): |
|
embeds = super().forward(ids) / math.sqrt(self.dim_model) |
|
return self.rotary_emb(embeds, ids_sub) |
|
|
|
def projection(self, x: torch.Tensor, ext_table: Optional[torch.Tensor] = None): |
|
logits = nn.functional.linear(x / math.sqrt(self.dim_model), self.weight) |
|
if ext_table is not None: |
|
logits_ext = nn.functional.linear(x, ext_table) |
|
logits = torch.cat([logits, logits_ext], dim=-1) |
|
return logits |
|
|
|
|
|
class CpmBeePreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = CpmBeeConfig |
|
base_model_prefix = "cpmbee" |
|
supports_gradient_checkpointing = True |
|
_keys_to_ignore_on_load_missing = [r"position_ids"] |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=self.config.init_std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
|
|
elif isinstance(module, CpmBeeEmbeddingExt): |
|
module.weight.data.normal_(mean=0.0, std=self.config.init_std) |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
elif isinstance(module, CpmBeeLayerNorm): |
|
module.weight.data.fill_(1.0) |
|
elif isinstance(module, CpmBeeBucketPositionBias): |
|
module.relative_attention_bias.data.normal_(mean=0.0, std=self.config.init_std) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, CpmBeeEncoder): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
CPMBEE_START_DOCSTRING = r""" |
|
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use |
|
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and |
|
behavior. |
|
|
|
Parameters |
|
config ([`~CpmBeeConfig`]): Model configuration class with all the parameters of the |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
CPMBEE_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.Tensor` of shape `(batch_size, seq_len)`): |
|
Indices of input sequence tokens in the vocabulary. |
|
|
|
Indices can be obtained using [`CPMBeeTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
input_id_sub (`torch.Tensor` of shape `(batch_size, seq_len)`): |
|
Subscription of input sequence tokens in the vocabulary. |
|
|
|
Subscription of normal text will be zero while the special tokens of each group will be the 0, 1, 2, ... |
|
<ans_0>, <ans_1>, <ans_2> ... belongs to group <ans>. <mask_0>, <mask_1>, <mask_2> ... belongs to group |
|
<mask>. |
|
position (`torch.Tensor` of shape `(batch_size, seq_len)`): |
|
The position of input sequence tokens in the vocabulary for each segment. if segment1 is 0, 1, 2 and |
|
segment2 is 0, 1, 2, 3, the position will be 0, 1, 2, 0, 1, 2, 3 |
|
context (`torch.Tensor` of shape `(batch_size, seq_len)`): |
|
Whether this token id is context or not. If is context, the value is 1. If not, the value is 0. If a token |
|
id is context, it does not need to be predicted. |
|
sample_ids (`torch.Tensor` of shape `(batch_size, seq_len)`): |
|
Give a sample id to every token id. The token ids with same sample ids belongs to the same sample. |
|
num_segments (`torch.Tensor` of shape `(batch_size, seq_len)`): |
|
Total number of segments in the current input. |
|
segment (`torch.Tensor` of shape `(batch_size, seq_len)`): |
|
Give a segment id to every token id. The token ids with same segment ids belongs to the same sample. |
|
|
|
Generally, a string key or value in input data will be a segment. For example, input {"input": "hello, ", |
|
"<ans>": ""}, the segments includes: "input", "hello, ", "<ans>" and "". |
|
segment_rel_offset (`torch.Tensor` of shape `(batch_size, seq_len)`): |
|
The offset of segment rel. |
|
segment_rel (`torch.Tensor` of shape `(batch_size, seq_len)`): |
|
The segment relevance. A relative implementation of measuring the importance of segments. |
|
past_states (`Dict[str, Union[torch.Tensor, List]]`): |
|
Store the history information including position, context, sample_ids, num_segments, segment and |
|
past_key_values. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
A dummy arguments for CPMBee. The `past_states` contains pre-computed hidden-states (key and values in the |
|
self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) and |
|
other history arguments to speed up sequential decoding. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare CPMBee Model outputting raw hidden-states without any specific head on top.", |
|
CPMBEE_START_DOCSTRING, |
|
) |
|
class CpmBeeModel(CpmBeePreTrainedModel): |
|
def __init__(self, config: CpmBeeConfig): |
|
super().__init__(config) |
|
if config.half: |
|
config.torch_dtype = torch.half |
|
else: |
|
config.torch_dtype = torch.float |
|
self.encoder = CpmBeeEncoder(config) |
|
self.input_embedding = CpmBeeEmbeddingExt(config) |
|
self.position_bias = CpmBeeBucketPositionBias(config) |
|
self.vocab_size = config.vocab_size |
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.input_embedding |
|
|
|
def set_input_embeddings(self, embeddings, **kwargs): |
|
self.input_embedding = embeddings |
|
|
|
@add_start_docstrings_to_model_forward(CPMBEE_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=BaseModelOutputWithPast, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: torch.Tensor, |
|
input_id_sub: Optional[torch.Tensor] = None, |
|
length: Optional[torch.Tensor] = None, |
|
context: Optional[torch.Tensor] = None, |
|
sample_ids: Optional[torch.Tensor] = None, |
|
num_segments: Optional[torch.Tensor] = None, |
|
segment: Optional[torch.Tensor] = None, |
|
segment_rel_offset: Optional[torch.Tensor] = None, |
|
segment_rel: Optional[torch.Tensor] = None, |
|
span: Optional[Dict] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
past_key_values: Optional[List] = None, |
|
use_cache: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
**kwargs, |
|
): |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
|
|
if input_id_sub is None: |
|
dtype, device = input_ids.dtype, input_ids.device |
|
batch, seq_length = input_ids.size() |
|
segment = torch.where(input_ids != 0, 2, 0).to(dtype=dtype, device=device) |
|
context = torch.full((batch, seq_length), 1, dtype=dtype, device=device) |
|
position = torch.arange(seq_length, dtype=dtype, device=device).repeat(batch, 1) |
|
input_id_sub = torch.full((batch, seq_length), 0, dtype=dtype, device=device) |
|
segment_rel_offset = torch.full((batch, seq_length), 0, dtype=dtype, device=device) |
|
segment_rel = torch.full((batch, seq_length), 0, dtype=dtype, device=device) |
|
num_segments = torch.full((batch, seq_length), 0, dtype=dtype, device=device) |
|
sample_ids = torch.zeros_like(input_ids) |
|
|
|
with torch.no_grad(): |
|
batch = input_ids.size(0) |
|
seqlen = input_ids.size(1) |
|
device = input_ids.device |
|
|
|
|
|
segment_rel_2d = torch.masked_fill( |
|
segment[:, :, None] * num_segments[:, :, None] |
|
+ segment[:, None, :] |
|
+ segment_rel_offset[:, :, None], |
|
~( |
|
(sample_ids[:, :, None] == sample_ids[:, None, :]) |
|
& (span[:, None, :] == span[:, :, None]) |
|
), |
|
0, |
|
).view(batch, seqlen * seqlen) |
|
|
|
segment_bucket = torch.gather( |
|
input=segment_rel, |
|
dim=1, |
|
index=segment_rel_2d.long(), |
|
).view(batch, seqlen, seqlen) |
|
|
|
segment_bucket.masked_fill_( |
|
~( |
|
(sample_ids[:, :, None] == sample_ids[:, None, :]) |
|
& (span[:, None, :] == span[:, :, None]) |
|
), |
|
1, |
|
) |
|
|
|
|
|
directional_mask_2d = torch.arange(seqlen, device=device) <= torch.arange( |
|
seqlen, device=device |
|
).view(-1, 1) |
|
|
|
sample_mask_2d = (sample_ids[:, :, None] == 0) | ( |
|
sample_ids[:, :, None] == sample_ids[:, None, :] |
|
) |
|
|
|
attention_mask = context[:, None, :] | ( |
|
context[:, :, None].logical_not() & directional_mask_2d.view(1, seqlen, seqlen) |
|
) |
|
|
|
attention_mask = ( |
|
attention_mask & sample_mask_2d & (span[:, None, :] == span[:, :, None]) |
|
) |
|
|
|
mask_1d = ( |
|
torch.arange(seqlen, device=device)[None, :].repeat(batch, 1) < length[:, None] |
|
) |
|
attention_mask = ( |
|
mask_1d.view(batch, seqlen, 1) & mask_1d.view(batch, 1, seqlen) & attention_mask |
|
) |
|
position = torch.arange(seqlen, device=device).expand(batch, seqlen) |
|
|
|
hidden_states = self.input_embedding(input_ids, input_id_sub) |
|
position_bias = self.position_bias(position, position, segment_bucket) |
|
hidden_states, present_key_values, all_hidden_states, all_attentions = self.encoder( |
|
hidden_states, |
|
attention_mask, |
|
position_bias, |
|
output_attentions, |
|
output_hidden_states, |
|
past_key_values=None, |
|
use_cache=False |
|
) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v for v in [hidden_states, present_key_values, all_hidden_states, all_attentions] if v is not None |
|
) |
|
|
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=present_key_values, |
|
hidden_states=all_hidden_states, |
|
attentions=all_attentions, |
|
) |
|
|
|
def inference( |
|
self, |
|
input_ids: torch.Tensor, |
|
input_id_sub: Optional[torch.Tensor] = None, |
|
position: Optional[torch.Tensor] = None, |
|
context: Optional[torch.Tensor] = None, |
|
sample_ids: Optional[torch.Tensor] = None, |
|
num_segments: Optional[torch.Tensor] = None, |
|
segment: Optional[torch.Tensor] = None, |
|
segment_rel_offset: Optional[torch.Tensor] = None, |
|
segment_rel: Optional[torch.Tensor] = None, |
|
past_states: Optional[Dict] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
past_key_values: Optional[List] = None, |
|
use_cache: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
**kwargs, |
|
): |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
|
|
if input_id_sub is None: |
|
dtype, device = input_ids.dtype, input_ids.device |
|
batch, seq_length = input_ids.size() |
|
segment = torch.where(input_ids != 0, 2, 0).to(dtype=dtype, device=device) |
|
context = torch.full((batch, seq_length), 1, dtype=dtype, device=device) |
|
position = torch.arange(seq_length, dtype=dtype, device=device).repeat(batch, 1) |
|
input_id_sub = torch.full((batch, seq_length), 0, dtype=dtype, device=device) |
|
segment_rel_offset = torch.full((batch, seq_length), 0, dtype=dtype, device=device) |
|
segment_rel = torch.full((batch, seq_length), 0, dtype=dtype, device=device) |
|
num_segments = torch.full((batch, seq_length), 0, dtype=dtype, device=device) |
|
sample_ids = torch.zeros_like(input_ids) |
|
|
|
with torch.no_grad(): |
|
if past_states is None: |
|
present_position = position |
|
present_context = context |
|
present_sample_ids = sample_ids |
|
present_num_segments = num_segments |
|
present_segments = segment |
|
present_buffer = None |
|
else: |
|
present_position = torch.cat([past_states["buffer_position"], position], dim=-1) |
|
present_context = torch.cat([past_states["buffer_context"], context], dim=-1) |
|
present_sample_ids = torch.cat([past_states["buffer_sample_ids"], sample_ids], dim=-1) |
|
present_num_segments = torch.cat([past_states["buffer_num_segments"], num_segments], dim=-1) |
|
present_segments = torch.cat([past_states["buffer_segments"], segment], dim=-1) |
|
present_buffer = past_states["buffer"] |
|
|
|
batch = input_ids.size(0) |
|
len_q = input_ids.size(1) |
|
len_buffer = present_position.size(1) |
|
|
|
segment_rel_2d = torch.masked_fill( |
|
segment[:, :, None] * num_segments[:, :, None] |
|
+ present_segments[:, None, :] |
|
+ segment_rel_offset[:, :, None], |
|
~((sample_ids[:, :, None] == present_sample_ids[:, None, :])), |
|
0, |
|
).view(batch, len_q * len_buffer) |
|
|
|
segment_bucket = torch.gather( |
|
input=segment_rel, |
|
dim=1, |
|
index=segment_rel_2d.long(), |
|
).view(batch, len_q, len_buffer) |
|
|
|
segment_bucket.masked_fill_( |
|
~((sample_ids[:, :, None] == present_sample_ids[:, None, :])), |
|
1, |
|
) |
|
|
|
|
|
directional_mask_2d = present_position[:, None, :] <= position[:, :, None] |
|
|
|
sample_mask_2d = (sample_ids[:, :, None] == 0) | (sample_ids[:, :, None] == present_sample_ids[:, None, :]) |
|
|
|
attention_mask = present_context[:, None, :] | ( |
|
context[:, :, None].logical_not() & directional_mask_2d.view(batch, len_q, len_buffer) |
|
) |
|
|
|
attention_mask = attention_mask & sample_mask_2d |
|
|
|
mask_1d = present_num_segments != 0 |
|
attention_mask = mask_1d.view(batch, 1, len_buffer) & attention_mask |
|
|
|
hidden_states = self.input_embedding(input_ids, input_id_sub) |
|
position_bias = self.position_bias(position, present_position, segment_bucket) |
|
hidden_states, present_key_values, all_hidden_states, all_attentions = self.encoder( |
|
hidden_states, |
|
attention_mask, |
|
position_bias, |
|
output_attentions, |
|
output_hidden_states, |
|
present_buffer, |
|
use_cache, |
|
) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v for v in [hidden_states, present_key_values, all_hidden_states, all_attentions] if v is not None |
|
) |
|
|
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=present_key_values, |
|
hidden_states=all_hidden_states, |
|
attentions=all_attentions, |
|
) |
|
|
|
|
|
class CpmBeeBeamHypotheses(BeamHypotheses): |
|
def __init__(self, num_beams: int, length_penalty: float, early_stopping: bool, max_length: Optional[int] = None): |
|
""" |
|
Override BeamHypotheses for CpmBee. The hyp to add is list but not tensor. |
|
""" |
|
super().__init__(num_beams, length_penalty, early_stopping, max_length) |
|
|
|
def add(self, hyp: List, sum_logprobs: float, beam_indices: Optional[torch.LongTensor] = None): |
|
""" |
|
Add a new hypothesis to the list. |
|
""" |
|
score = sum_logprobs / (len(hyp) ** self.length_penalty) |
|
if len(self) < self.num_beams or score > self.worst_score: |
|
self.beams.append((score, hyp, beam_indices)) |
|
if len(self) > self.num_beams: |
|
sorted_next_scores = sorted([(s, idx) for idx, (s, _, _) in enumerate(self.beams)]) |
|
del self.beams[sorted_next_scores[0][1]] |
|
self.worst_score = sorted_next_scores[1][0] |
|
else: |
|
self.worst_score = min(score, self.worst_score) |
|
|
|
|
|
class CpmBeeBeamSearchScorer(BeamSearchScorer): |
|
""" |
|
Override BeamSearchScorer for CPMBee to support: |
|
1. Replace beam_tokens by beam_states, containing `idx`, `ans`, `nx_token_id`... |
|
2. The `process` will update the beam_states |
|
3. The `finalize` will just return the best hypotheses as a list. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
batch_size: int, |
|
num_beams: int, |
|
device: torch.device, |
|
length_penalty: Optional[float] = 1.0, |
|
do_early_stopping: Optional[Union[bool, str]] = False, |
|
num_beam_hyps_to_keep: Optional[int] = 1, |
|
num_beam_groups: Optional[int] = 1, |
|
max_length: Optional[int] = None, |
|
**model_kwargs, |
|
): |
|
self.num_beams = num_beams |
|
self.device = device |
|
self.length_penalty = length_penalty |
|
self.do_early_stopping = do_early_stopping |
|
self.num_beam_hyps_to_keep = num_beam_hyps_to_keep |
|
self.num_beam_groups = num_beam_groups |
|
self.group_size = self.num_beams // self.num_beam_groups |
|
|
|
self._is_init = False |
|
self._beam_hyps = [ |
|
CpmBeeBeamHypotheses( |
|
num_beams=self.num_beams, |
|
length_penalty=self.length_penalty, |
|
early_stopping=self.do_early_stopping, |
|
max_length=max_length, |
|
) |
|
for _ in range(batch_size) |
|
] |
|
self._done = torch.tensor([False for _ in range(batch_size)], dtype=torch.bool, device=self.device) |
|
|
|
self.beam_states = [] |
|
for sent_id in range(batch_size): |
|
instance_beam_states = [] |
|
|
|
for _ in range(self.num_beams): |
|
instance_beam_states.append( |
|
{ |
|
"idx": 0, |
|
"ans": [], |
|
"nx_token_id": 6, |
|
"nx_token_sub": 0, |
|
"nx_segment_id": model_kwargs["other_info"][sent_id]["predict_segments"][0][0], |
|
"nx_position": 0, |
|
} |
|
) |
|
self.beam_states.append(instance_beam_states) |
|
|
|
def process( |
|
self, |
|
batch_size: int, |
|
cur_len: int, |
|
_next_scores: torch.FloatTensor, |
|
next_scores: torch.FloatTensor, |
|
next_tokens: torch.LongTensor, |
|
vocab_size: Optional[int] = None, |
|
pad_token_id: Optional[int] = None, |
|
bos_token_id: Optional[int] = None, |
|
eos_token_id: Optional[Union[int, List[int]]] = None, |
|
max_length: Optional[int] = None, |
|
ext_table_sub_cpu: Optional[torch.Tensor] = None, |
|
ext_table_ids_cpu: Optional[torch.Tensor] = None, |
|
**model_kwargs, |
|
) -> Tuple[torch.Tensor]: |
|
next_beam_state = [] |
|
for sent_id in range(batch_size): |
|
self._done[sent_id] = self._done[sent_id] or self._beam_hyps[sent_id].is_done( |
|
next_scores[sent_id].max().item(), cur_len |
|
) |
|
if self._done[sent_id]: |
|
next_beam_state.append( |
|
[ |
|
( |
|
{ |
|
"idx": 0, |
|
"ans": [], |
|
"nx_token_id": pad_token_id, |
|
"nx_token_sub": 0, |
|
"nx_segment_id": 0, |
|
"nx_position": 0, |
|
}, |
|
0, |
|
0, |
|
) |
|
] |
|
* self.num_beams |
|
) |
|
continue |
|
|
|
next_instance_beam_states = [] |
|
|
|
for idx, value in zip(next_tokens[sent_id], next_scores[sent_id]): |
|
beam_id = torch.div(idx, _next_scores.size(-1), rounding_mode="floor").item() |
|
word_id = (idx % _next_scores.size(-1)).item() |
|
|
|
curr_info = self.beam_states[sent_id][beam_id] |
|
if ( |
|
word_id == eos_token_id |
|
and (curr_info["idx"] + 1 == len(model_kwargs["other_info"][sent_id]["predict_segments"])) |
|
) or cur_len == max_length: |
|
self._beam_hyps[sent_id].add( |
|
self.beam_states[sent_id][beam_id]["ans"] |
|
+ [ |
|
( |
|
word_id, |
|
model_kwargs["other_info"][sent_id]["predict_segments"][curr_info["idx"]][1], |
|
) |
|
], |
|
value.item(), |
|
) |
|
elif word_id == eos_token_id: |
|
next_instance_beam_states.append( |
|
( |
|
{ |
|
"idx": curr_info["idx"] + 1, |
|
"ans": curr_info["ans"] |
|
+ [ |
|
( |
|
word_id, |
|
model_kwargs["other_info"][sent_id]["predict_segments"][curr_info["idx"]][1], |
|
) |
|
], |
|
"nx_token_id": bos_token_id, |
|
"nx_token_sub": 0, |
|
"nx_segment_id": model_kwargs["other_info"][sent_id]["predict_segments"][ |
|
curr_info["idx"] + 1 |
|
][0], |
|
"nx_position": 0, |
|
}, |
|
value.item(), |
|
sent_id * self.num_beams + beam_id, |
|
) |
|
) |
|
|
|
else: |
|
raw_word_id = word_id |
|
word_id_sub = 0 |
|
if word_id >= vocab_size: |
|
word_id -= vocab_size |
|
word_id_sub = int(ext_table_sub_cpu[word_id].item()) |
|
word_id = int(ext_table_ids_cpu[word_id].item()) |
|
|
|
next_instance_beam_states.append( |
|
( |
|
{ |
|
"idx": curr_info["idx"], |
|
"ans": curr_info["ans"] |
|
+ [ |
|
( |
|
raw_word_id, |
|
model_kwargs["other_info"][sent_id]["predict_segments"][curr_info["idx"]][1], |
|
) |
|
], |
|
"nx_token_id": word_id, |
|
"nx_token_sub": word_id_sub, |
|
"nx_segment_id": curr_info["nx_segment_id"], |
|
"nx_position": curr_info["nx_position"] + 1, |
|
}, |
|
value.item(), |
|
sent_id * self.num_beams + beam_id, |
|
) |
|
) |
|
|
|
if len(next_instance_beam_states) == self.num_beams: |
|
break |
|
assert len(next_instance_beam_states) == 0 if cur_len == max_length else self.num_beams |
|
next_beam_state.append(next_instance_beam_states) |
|
|
|
if cur_len == max_length: |
|
return None |
|
|
|
beam_reorder_idx = [] |
|
beam_new_scores = [] |
|
beam_states = [] |
|
for sent_id in range(batch_size): |
|
instance_beam_states = [] |
|
for beam_id in range(self.num_beams): |
|
state, value, beam_idx = next_beam_state[sent_id][beam_id] |
|
beam_reorder_idx.append(beam_idx) |
|
beam_new_scores.append(value) |
|
instance_beam_states.append(state) |
|
beam_states.append(instance_beam_states) |
|
self.beam_states = beam_states |
|
|
|
return UserDict( |
|
{ |
|
"next_beam_scores": torch.tensor(beam_new_scores, device=self.device).view(-1), |
|
"next_beam_states": beam_states, |
|
"next_beam_indices": torch.tensor(beam_reorder_idx, dtype=torch.int32, device=self.device).view(-1), |
|
} |
|
) |
|
|
|
def finalize(self) -> Tuple[torch.LongTensor]: |
|
results = [] |
|
for _, hypotheses in enumerate(self._beam_hyps): |
|
best_hyp = max(hypotheses.beams, key=lambda x: x[0])[1] |
|
results.append(best_hyp) |
|
return results |
|
|
|
@staticmethod |
|
def apply_repetition_penalty( |
|
logits, |
|
batch_size, |
|
num_beams, |
|
prev_output_tokens, |
|
repetition_penalty, |
|
start_idx=None, |
|
end_idx=None, |
|
window_size=None, |
|
): |
|
|
|
assert repetition_penalty >= 1, "repetition penalty coefficient should >= 1" |
|
|
|
for i in range(batch_size * num_beams): |
|
if start_idx is None or end_idx is None: |
|
output_tokens = prev_output_tokens[i].tolist() |
|
else: |
|
if end_idx >= start_idx: |
|
if window_size: |
|
output_tokens = prev_output_tokens[i][ |
|
max(start_idx, end_idx + 1 - window_size) : end_idx + 1 |
|
].tolist() |
|
else: |
|
output_tokens = prev_output_tokens[i][start_idx : end_idx + 1].tolist() |
|
else: |
|
output_tokens = [] |
|
for previous_token in set(output_tokens): |
|
|
|
|
|
if logits[i, previous_token] < 0: |
|
logits[i, previous_token] *= repetition_penalty |
|
else: |
|
logits[i, previous_token] /= repetition_penalty |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The CPMBee Model with a language modeling head on top (linear layer with weights tied to the input embeddings). |
|
""", |
|
CPMBEE_START_DOCSTRING, |
|
) |
|
class CpmBeeForCausalLM(CpmBeePreTrainedModel): |
|
_keys_to_ignore_on_load_missing = [r"lm_head.weight"] |
|
|
|
def __init__(self, config: CpmBeeConfig): |
|
super().__init__(config) |
|
self.cpmbee = CpmBeeModel(config) |
|
|
|
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(CPMBEE_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=CausalLMOutputWithPast, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
input_id_sub: Optional[torch.Tensor] = None, |
|
length: Optional[torch.Tensor] = None, |
|
context: Optional[torch.Tensor] = None, |
|
sample_ids: Optional[torch.Tensor] = None, |
|
num_segments: Optional[torch.Tensor] = None, |
|
segment: Optional[torch.Tensor] = None, |
|
segment_rel_offset: Optional[torch.Tensor] = None, |
|
segment_rel: Optional[torch.Tensor] = None, |
|
span: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
past_key_values: Optional[List] = None, |
|
use_cache: Optional[bool] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
return_dict: Optional[bool] = None, |
|
ext_table_ids: Optional[torch.Tensor] = None, |
|
ext_table_sub: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
input_ids (`torch.Tensor` of shape `(batch_size, seq_len)`): |
|
Indices of input sequence tokens in the vocabulary. |
|
|
|
Indices can be obtained using [`CPMBeeTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
input_id_sub (`torch.Tensor` of shape `(batch_size, seq_len)`): |
|
Subscription of input sequence tokens in the vocabulary. |
|
|
|
Subscription of normal text will be zero while the special tokens of each group will be the 0, 1, 2, |
|
... <ans_0>, <ans_1>, <ans_2> ... belongs to group <ans>. <mask_0>, <mask_1>, <mask_2> ... belongs to |
|
group <mask>. |
|
length (`torch.Tensor` of shape `(batch_size)`): |
|
The length of sequences in batch. |
|
context (`torch.Tensor` of shape `(batch_size, seq_len)`): |
|
Whether this token id is context or not. If is context, the value is 1. If not, the value is 0. If a |
|
token id is context, it does not need to be predicted. |
|
sample_ids (`torch.Tensor` of shape `(batch_size, seq_len)`): |
|
Give a sample id to every token id. The token ids with same sample ids belongs to the same sample. |
|
num_segments (`torch.Tensor` of shape `(batch_size, seq_len)`): |
|
Total number of segments in the current input. |
|
segment (`torch.Tensor` of shape `(batch_size, seq_len)`): |
|
Give a segment id to every token id. The token ids with same segment ids belongs to the same sample. |
|
|
|
Generally, a string key or value in input data will be a segment. For example, input {"input": "hello, |
|
", "<ans>": ""}, the segments includes: "input", "hello, ", "<ans>" and "". |
|
segment_rel_offset (`torch.Tensor` of shape `(batch_size, seq_len)`): |
|
The offset of segment rel. |
|
segment_rel (`torch.Tensor` of shape `(batch_size, seq_len)`): |
|
The segment relevance. A relative implementation of measuring the importance of segments. |
|
span (`Dict[str, Union[torch.Tensor, List]]`): |
|
Span will record every input_ids shape. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
A dummy arguments for CPMBee. The `past_states` contains pre-computed hidden-states (key and values in |
|
the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` |
|
input) and other history arguments to speed up sequential decoding. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
ext_table_ids (`torch.Tensor`, *optional*): |
|
ext_table ids for embedding projection. |
|
ext_table_sub (`torch.Tensor`, *optional*): |
|
ext_table subscriptions for embedding projection. |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
model_output = self.cpmbee( |
|
input_ids, |
|
input_id_sub, |
|
length, |
|
context, |
|
sample_ids, |
|
num_segments, |
|
segment, |
|
segment_rel_offset, |
|
segment_rel, |
|
span, |
|
output_attentions, |
|
output_hidden_states, |
|
past_key_values, |
|
use_cache, |
|
return_dict, |
|
) |
|
hidden_states = model_output.last_hidden_state if return_dict else model_output[0] |
|
|
|
if ext_table_ids is not None: |
|
ext_table = self.cpmbee.input_embedding(ext_table_ids, ext_table_sub) |
|
else: |
|
ext_table = None |
|
logits = self.cpmbee.input_embedding.projection(hidden_states, ext_table) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_func = nn.CrossEntropyLoss() |
|
loss = loss_func(logits.view(-1, logits.size(-1)), labels.long().view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + model_output[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=model_output.past_key_values, |
|
hidden_states=model_output.hidden_states, |
|
attentions=model_output.attentions, |
|
) |
|
|
|
def inference( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
input_id_sub: Optional[torch.Tensor] = None, |
|
position: Optional[torch.Tensor] = None, |
|
context: Optional[torch.Tensor] = None, |
|
sample_ids: Optional[torch.Tensor] = None, |
|
num_segments: Optional[torch.Tensor] = None, |
|
segment: Optional[torch.Tensor] = None, |
|
segment_rel_offset: Optional[torch.Tensor] = None, |
|
segment_rel: Optional[torch.Tensor] = None, |
|
past_states: Optional[Dict] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
past_key_values: Optional[List] = None, |
|
use_cache: Optional[bool] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
return_dict: Optional[bool] = None, |
|
ext_table_ids: Optional[torch.Tensor] = None, |
|
ext_table_sub: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
input_ids (`torch.Tensor` of shape `(batch_size, seq_len)`): |
|
Indices of input sequence tokens in the vocabulary. |
|
|
|
Indices can be obtained using [`CPMBeeTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
input_id_sub (`torch.Tensor` of shape `(batch_size, seq_len)`): |
|
Subscription of input sequence tokens in the vocabulary. |
|
|
|
Subscription of normal text will be zero while the special tokens of each group will be the 0, 1, 2, |
|
... <ans_0>, <ans_1>, <ans_2> ... belongs to group <ans>. <mask_0>, <mask_1>, <mask_2> ... belongs to |
|
group <mask>. |
|
position (`torch.Tensor` of shape `(batch_size, seq_len)`): |
|
The position of input sequence tokens in the vocabulary for each segment. if segment1 is 0, 1, 2 and |
|
segment2 is 0, 1, 2, 3, the position will be 0, 1, 2, 0, 1, 2, 3 |
|
context (`torch.Tensor` of shape `(batch_size, seq_len)`): |
|
Whether this token id is context or not. If is context, the value is 1. If not, the value is 0. If a |
|
token id is context, it does not need to be predicted. |
|
sample_ids (`torch.Tensor` of shape `(batch_size, seq_len)`): |
|
Give a sample id to every token id. The token ids with same sample ids belongs to the same sample. |
|
num_segments (`torch.Tensor` of shape `(batch_size, seq_len)`): |
|
Total number of segments in the current input. |
|
segment (`torch.Tensor` of shape `(batch_size, seq_len)`): |
|
Give a segment id to every token id. The token ids with same segment ids belongs to the same sample. |
|
|
|
Generally, a string key or value in input data will be a segment. For example, input {"input": "hello, |
|
", "<ans>": ""}, the segments includes: "input", "hello, ", "<ans>" and "". |
|
segment_rel_offset (`torch.Tensor` of shape `(batch_size, seq_len)`): |
|
The offset of segment rel. |
|
segment_rel (`torch.Tensor` of shape `(batch_size, seq_len)`): |
|
The segment relevance. A relative implementation of measuring the importance of segments. |
|
past_states (`Dict[str, Union[torch.Tensor, List]]`): |
|
Store the history information including position, context, sample_ids, num_segments, segment and |
|
past_key_values. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
A dummy arguments for CPMBee. The `past_states` contains pre-computed hidden-states (key and values in |
|
the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` |
|
input) and other history arguments to speed up sequential decoding. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
ext_table_ids (`torch.Tensor`, *optional*): |
|
ext_table ids for embedding projection. |
|
ext_table_sub (`torch.Tensor`, *optional*): |
|
ext_table subscriptions for embedding projection. |
|
|
|
Example: |
|
|
|
Text Generation with CpmBeeForCausalLM. |
|
```python |
|
>>> from transformers import CpmBeeTokenizer, CpmBeeForCausalLM |
|
|
|
>>> texts = {"input": "今天天气不错,", "<ans>": ""} |
|
>>> model = CpmBeeForCausalLM.from_pretrained("openbmb/cpm-bee-10b") |
|
>>> tokenizer = CPMBeeTokenizer.from_pretrained("openbmb/cpm-bee-10b") |
|
>>> output_texts = model.generate({"input": "今天天气不错,", "<ans>": ""}, tokenizer) |
|
>>> print(output_texts) |
|
{'input': '今天天气不错,', '<ans>': '适合睡觉。'} |
|
``` |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
model_output = self.cpmbee.inference( |
|
input_ids, |
|
input_id_sub, |
|
position, |
|
context, |
|
sample_ids, |
|
num_segments, |
|
segment, |
|
segment_rel_offset, |
|
segment_rel, |
|
past_states, |
|
output_attentions, |
|
output_hidden_states, |
|
past_key_values, |
|
use_cache, |
|
return_dict, |
|
) |
|
hidden_states = model_output.last_hidden_state if return_dict else model_output[0] |
|
|
|
if ext_table_ids is not None: |
|
ext_table = self.cpmbee.input_embedding(ext_table_ids, ext_table_sub) |
|
else: |
|
ext_table = None |
|
logits = self.cpmbee.input_embedding.projection(hidden_states, ext_table) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_func = nn.CrossEntropyLoss() |
|
loss = loss_func(logits.view(-1, logits.size(-1)), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + model_output[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=model_output.past_key_values, |
|
hidden_states=model_output.hidden_states, |
|
attentions=model_output.attentions, |
|
) |
|
|
|
def get_input_embeddings(self): |
|
return self.cpmbee.input_embedding |
|
|
|
def set_input_embeddings(self, embeddings): |
|
self.cpmbee.input_embedding = embeddings |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids: torch.Tensor, |
|
batch_size: int, |
|
beam_scorer: CpmBeeBeamSearchScorer = None, |
|
input_id_subs: Optional[torch.Tensor] = None, |
|
input_pos: Optional[torch.Tensor] = None, |
|
segment_ids: Optional[torch.Tensor] = None, |
|
batch_ext_table_ids: Optional[torch.Tensor] = None, |
|
batch_ext_table_sub: Optional[torch.Tensor] = None, |
|
other_info: Optional[Dict] = None, |
|
**model_kwargs, |
|
): |
|
""" |
|
Choose the current input according to beam states. |
|
""" |
|
|
|
context = model_kwargs.get("context") |
|
sample_ids = model_kwargs.get("sample_ids") |
|
segment_rel_offset = model_kwargs.get("segment_rel_offset") |
|
num_segments = model_kwargs.get("num_segments") |
|
segment_rel = model_kwargs.get("segment_rel") |
|
past_states = model_kwargs.get("past_states", None) |
|
past_key_values = model_kwargs.get("past_key_values", None) |
|
_input_ids = input_ids |
|
|
|
|
|
if beam_scorer is not None: |
|
tmp_input = [] |
|
tmp_input_sub = [] |
|
tmp_position = [] |
|
tmp_segment = [] |
|
for sent_id in range(batch_size): |
|
for beam_id in range(beam_scorer.num_beams): |
|
tmp_input.append(beam_scorer.beam_states[sent_id][beam_id]["nx_token_id"]) |
|
tmp_input_sub.append(beam_scorer.beam_states[sent_id][beam_id]["nx_token_sub"]) |
|
tmp_position.append(beam_scorer.beam_states[sent_id][beam_id]["nx_position"]) |
|
tmp_segment.append(beam_scorer.beam_states[sent_id][beam_id]["nx_segment_id"]) |
|
|
|
model_kwargs["input_id_subs"] = input_id_subs = torch.tensor( |
|
tmp_input_sub, dtype=torch.int32, device=self.device |
|
).view(batch_size * beam_scorer.num_beams, 1) |
|
model_kwargs["input_pos"] = input_pos = torch.tensor( |
|
tmp_position, dtype=torch.int32, device=self.device |
|
).view(batch_size * beam_scorer.num_beams, 1) |
|
model_kwargs["segment_ids"] = segment_ids = torch.tensor( |
|
tmp_segment, dtype=torch.int32, device=self.device |
|
).view(batch_size * beam_scorer.num_beams, 1) |
|
input_ids = torch.cat( |
|
[ |
|
input_ids, |
|
torch.tensor(tmp_input, dtype=torch.int32, device=self.device).view( |
|
batch_size * beam_scorer.num_beams, 1 |
|
), |
|
], |
|
dim=-1, |
|
) |
|
_input_ids = input_ids[:, -1:] |
|
|
|
return { |
|
"input_ids": _input_ids, |
|
"input_id_sub": input_id_subs, |
|
"position": input_pos, |
|
"context": context, |
|
"sample_ids": sample_ids, |
|
"segment_rel_offset": segment_rel_offset, |
|
"segment": segment_ids, |
|
"num_segments": num_segments, |
|
"segment_rel": segment_rel, |
|
"use_cache": True, |
|
"past_key_values": past_key_values, |
|
"ext_table_ids": batch_ext_table_ids, |
|
"ext_table_sub": batch_ext_table_sub, |
|
"past_states": past_states, |
|
}, input_ids |
|
|
|
def _update_model_kwargs_for_generation( |
|
self, |
|
outputs: ModelOutput, |
|
model_inputs=None, |
|
**model_kwargs, |
|
) -> Dict[str, Any]: |
|
""" |
|
Concatenate the history input and current input. |
|
""" |
|
|
|
old_past_states = model_kwargs["past_states"] |
|
model_kwargs["past_states"] = { |
|
"buffer_position": torch.cat([old_past_states["buffer_position"], model_inputs["position"]], dim=-1), |
|
"buffer_context": torch.cat([old_past_states["buffer_context"], model_inputs["context"]], dim=-1), |
|
"buffer_sample_ids": torch.cat([old_past_states["buffer_sample_ids"], model_inputs["sample_ids"]], dim=-1), |
|
"buffer_num_segments": torch.cat( |
|
[old_past_states["buffer_num_segments"], model_inputs["num_segments"]], dim=-1 |
|
), |
|
"buffer_segments": torch.cat([old_past_states["buffer_segments"], model_inputs["segment"]], dim=-1), |
|
"buffer": outputs.past_key_values, |
|
} |
|
|
|
return model_kwargs |
|
|
|
def _reorder_cache(self, past_key_values: Dict, beam_idx: torch.Tensor): |
|
beam_idx = beam_idx.tolist() |
|
for kw in past_key_values.keys(): |
|
if kw == "buffer": |
|
buf_list = past_key_values[kw] |
|
nw_buf_list = [] |
|
for buf in buf_list: |
|
if buf == (None, None): |
|
nw_buf_list.append((None, None)) |
|
else: |
|
k_buf, v_buf = buf |
|
nw_buf_list.append((k_buf[beam_idx, :], v_buf[beam_idx, :])) |
|
past_key_values[kw] = nw_buf_list |
|
else: |
|
past_key_values[kw] = past_key_values[kw][beam_idx, :] |
|
|
|
return past_key_values |
|
|
|
@staticmethod |
|
def _expand_inputs_for_generation( |
|
expand_size: int = 1, |
|
is_encoder_decoder: bool = False, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
**model_kwargs, |
|
) -> Tuple[torch.LongTensor, Dict[str, Any]]: |
|
"""Expands tensors from [batch_size, ...] to [batch_size * expand_size, ...]""" |
|
|
|
|
|
def _expand_dict_for_generation(dict_to_expand): |
|
for key in dict_to_expand: |
|
if ( |
|
dict_to_expand[key] is not None |
|
and isinstance(dict_to_expand[key], torch.Tensor) |
|
and "ext_table" not in key |
|
): |
|
dict_to_expand[key] = dict_to_expand[key].repeat_interleave(expand_size, dim=0) |
|
return dict_to_expand |
|
|
|
if input_ids is not None: |
|
input_ids = input_ids.repeat_interleave(expand_size, dim=0) |
|
|
|
model_kwargs = _expand_dict_for_generation(model_kwargs) |
|
|
|
if is_encoder_decoder: |
|
if model_kwargs.get("encoder_outputs") is None: |
|
raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.") |
|
model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"]) |
|
|
|
return input_ids, model_kwargs |
|
|
|
def adjust_logits_during_generation( |
|
self, |
|
logits: torch.FloatTensor, |
|
batch_size: int, |
|
beam_size: int, |
|
vocab_size: int, |
|
ext_table_ids: torch.Tensor, |
|
**model_kwargs, |
|
) -> torch.FloatTensor: |
|
""" |
|
Implement in subclasses of [`PreTrainedModel`] for custom behavior to adjust the logits in the generate method. |
|
""" |
|
for sent_id in range(batch_size): |
|
if 1 not in model_kwargs["other_info"][sent_id]["ext_table"]: |
|
|
|
logits[sent_id * beam_size : (sent_id + 1) * beam_size, 1] = -10000 |
|
ext_ids = set() |
|
for v in model_kwargs["other_info"][sent_id]["ext_table"].keys(): |
|
ext_ids.add(v) |
|
for ext_id in range(vocab_size, vocab_size + ext_table_ids.size(0)): |
|
if ext_id not in ext_ids: |
|
logits[sent_id * beam_size : (sent_id + 1) * beam_size, ext_id] = -10000 |
|
return logits |
|
|
|
def beam_search( |
|
self, |
|
input_ids: torch.LongTensor, |
|
beam_scorer: CpmBeeBeamSearchScorer, |
|
repetition_penalty: Optional[float] = 1.0, |
|
logits_processor: Optional[LogitsProcessorList] = None, |
|
max_length: Optional[int] = None, |
|
pad_token_id: Optional[int] = None, |
|
eos_token_id: Optional[Union[int, List[int]]] = None, |
|
bos_token_id: Optional[Union[int, List[int]]] = None, |
|
vocab_size: Optional[int] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
output_scores: Optional[bool] = None, |
|
return_dict_in_generate: Optional[bool] = None, |
|
synced_gpus: bool = False, |
|
**model_kwargs, |
|
) -> List: |
|
""" |
|
Override the beam_search for CPMBee. |
|
""" |
|
|
|
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList() |
|
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id |
|
eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id |
|
bos_token_id = bos_token_id if bos_token_id is not None else self.generation_config.bos_token_id |
|
vocab_size = vocab_size if vocab_size is not None else self.generation_config.vocab_size |
|
max_length = max_length if max_length is not None else self.generation_config.max_new_tokens |
|
output_scores = output_scores if output_scores is not None else self.generation_config.output_scores |
|
output_attentions = ( |
|
output_attentions if output_attentions is not None else self.generation_config.output_attentions |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states |
|
) |
|
return_dict_in_generate = ( |
|
return_dict_in_generate |
|
if return_dict_in_generate is not None |
|
else self.generation_config.return_dict_in_generate |
|
) |
|
|
|
batch_size = len(beam_scorer._beam_hyps) |
|
num_beams = beam_scorer.num_beams |
|
|
|
batch_beam_size, cur_len = input_ids.shape |
|
|
|
if num_beams * batch_size != batch_beam_size: |
|
raise ValueError( |
|
f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}." |
|
) |
|
|
|
|
|
scores = () if (return_dict_in_generate and output_scores) else None |
|
beam_indices = ( |
|
tuple(() for _ in range(batch_beam_size)) if (return_dict_in_generate and output_scores) else None |
|
) |
|
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None |
|
cross_attentions = () if (return_dict_in_generate and output_attentions) else None |
|
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None |
|
|
|
|
|
|
|
beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=self.device) |
|
beam_scores[:, 1:] = -1e9 |
|
beam_scores = beam_scores.view((batch_size * num_beams,)) |
|
|
|
this_peer_finished = False |
|
|
|
|
|
model_inputs, input_ids = self.prepare_inputs_for_generation(input_ids, batch_size, **model_kwargs) |
|
pred_start_index = input_ids.size(-1) |
|
outputs = self.inference( |
|
**model_inputs, |
|
return_dict=True, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
) |
|
|
|
|
|
model_kwargs["past_states"] = { |
|
"buffer_position": model_inputs["position"], |
|
"buffer_context": model_inputs["context"], |
|
"buffer_sample_ids": model_inputs["sample_ids"], |
|
"buffer_num_segments": model_inputs["num_segments"], |
|
"buffer_segments": model_inputs["segment"], |
|
"buffer": outputs.past_key_values, |
|
} |
|
model_kwargs["context"] = torch.ones(batch_beam_size, dtype=torch.bool, device=self.device).view( |
|
batch_beam_size, 1 |
|
) |
|
model_kwargs["sample_ids"] = torch.zeros(batch_beam_size, dtype=torch.int32, device=self.device).view( |
|
batch_beam_size, 1 |
|
) |
|
model_kwargs["num_segments"] = model_kwargs["num_segments"][:, -1:] |
|
model_kwargs["segment_rel_offset"] = model_kwargs["segment_rel_offset"][:, -1:] |
|
model_kwargs["past_key_values"] = outputs.past_key_values |
|
|
|
ext_table_ids_cpu = model_inputs["ext_table_ids"].cpu() |
|
ext_table_sub_cpu = model_inputs["ext_table_sub"].cpu() |
|
|
|
cur_len = 0 |
|
while True: |
|
if synced_gpus: |
|
|
|
|
|
this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device) |
|
|
|
dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM) |
|
|
|
if this_peer_finished_flag.item() == 0.0: |
|
break |
|
|
|
model_inputs, input_ids = self.prepare_inputs_for_generation( |
|
input_ids, batch_size, beam_scorer, **model_kwargs |
|
) |
|
|
|
outputs = self.inference( |
|
**model_inputs, |
|
return_dict=True, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
) |
|
|
|
next_token_logits = outputs.logits[:, -1, :] |
|
|
|
if all(beam_scorer._done): |
|
break |
|
|
|
|
|
next_token_logits = self.adjust_logits_during_generation( |
|
next_token_logits, batch_size, num_beams, vocab_size, ext_table_ids_cpu, **model_kwargs |
|
) |
|
|
|
|
|
beam_scorer.apply_repetition_penalty( |
|
next_token_logits, |
|
batch_size, |
|
num_beams, |
|
input_ids, |
|
repetition_penalty, |
|
pred_start_index, |
|
input_ids.size(-1) - 1, |
|
None, |
|
) |
|
|
|
_next_token_scores = nn.functional.log_softmax( |
|
next_token_logits, dim=-1 |
|
) |
|
|
|
next_token_scores_processed = logits_processor(input_ids, _next_token_scores) |
|
|
|
next_token_scores = next_token_scores_processed + beam_scores[:, None].expand_as(_next_token_scores) |
|
|
|
|
|
if return_dict_in_generate: |
|
if output_scores: |
|
scores += (next_token_scores_processed,) |
|
if output_attentions: |
|
decoder_attentions += ( |
|
(outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,) |
|
) |
|
if self.config.is_encoder_decoder: |
|
cross_attentions += (outputs.cross_attentions,) |
|
|
|
if output_hidden_states: |
|
decoder_hidden_states += ( |
|
(outputs.decoder_hidden_states,) |
|
if self.config.is_encoder_decoder |
|
else (outputs.hidden_states,) |
|
) |
|
|
|
|
|
next_token_scores = next_token_scores.view(batch_size, -1) |
|
|
|
|
|
next_token_scores, next_tokens = torch.topk( |
|
next_token_scores, 2 * num_beams, dim=1, largest=True, sorted=True |
|
) |
|
|
|
beam_outputs = beam_scorer.process( |
|
batch_size, |
|
cur_len, |
|
_next_token_scores, |
|
next_token_scores, |
|
next_tokens, |
|
vocab_size=vocab_size, |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
max_length=max_length, |
|
ext_table_ids_cpu=ext_table_ids_cpu, |
|
ext_table_sub_cpu=ext_table_sub_cpu, |
|
**model_kwargs, |
|
) |
|
if beam_outputs is None: |
|
break |
|
beam_idx = beam_outputs["next_beam_indices"] |
|
beam_scores = beam_outputs["next_beam_scores"] |
|
|
|
input_ids = input_ids[beam_idx.tolist(), :] |
|
model_kwargs = self._update_model_kwargs_for_generation(outputs, model_inputs, **model_kwargs) |
|
if model_kwargs["past_states"] is not None: |
|
model_kwargs["past_states"] = self._reorder_cache(model_kwargs["past_states"], beam_idx) |
|
|
|
if return_dict_in_generate and output_scores: |
|
beam_indices = tuple((beam_indices[beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices)))) |
|
|
|
cur_len += 1 |
|
|
|
if beam_scorer.is_done or cur_len == max_length + 1: |
|
if not synced_gpus: |
|
break |
|
else: |
|
this_peer_finished = True |
|
|
|
sequence_outputs = beam_scorer.finalize() |
|
|
|
return sequence_outputs |
|
|
|
def _generate( |
|
self, |
|
inputs: Optional[torch.Tensor] = None, |
|
generation_config: Optional[GenerationConfig] = None, |
|
repetition_penalty: Optional[float] = 1.0, |
|
logits_processor: Optional[LogitsProcessorList] = None, |
|
stopping_criteria: Optional[StoppingCriteriaList] = None, |
|
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None, |
|
synced_gpus: Optional[bool] = None, |
|
streamer: Optional["BaseStreamer"] = None, |
|
**kwargs, |
|
) -> List: |
|
r""" |
|
The generation of CPMBee. |
|
1. It will use beam search as generation strategy. |
|
2. It will use CpmBeeBeamSearchScorer as the beamsearch scorer. |
|
""" |
|
if synced_gpus is None: |
|
if is_deepspeed_zero3_enabled() and dist.get_world_size() > 1: |
|
synced_gpus = True |
|
else: |
|
synced_gpus = False |
|
|
|
|
|
self._validate_model_class() |
|
|
|
|
|
if generation_config is None: |
|
|
|
|
|
if self.generation_config._from_model_config: |
|
new_generation_config = GenerationConfig.from_model_config(self.config) |
|
if new_generation_config != self.generation_config: |
|
warnings.warn( |
|
"You have modified the pretrained model configuration to control generation. This is a" |
|
" deprecated strategy to control generation and will be removed soon, in a future version." |
|
" Please use a generation configuration file (see" |
|
" https://huggingface.co/docs/transformers/main_classes/text_generation)" |
|
) |
|
self.generation_config = new_generation_config |
|
generation_config = self.generation_config |
|
|
|
generation_config = copy.deepcopy(generation_config) |
|
model_kwargs = generation_config.update(**kwargs) |
|
generation_config.validate() |
|
self._validate_model_kwargs(model_kwargs.copy()) |
|
|
|
|
|
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList() |
|
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList() |
|
|
|
if generation_config.pad_token_id is None and generation_config.eos_token_id is not None: |
|
if model_kwargs.get("attention_mask", None) is None: |
|
logger.warning( |
|
"The attention mask and the pad token id were not set. As a consequence, you may observe " |
|
"unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results." |
|
) |
|
eos_token_id = generation_config.eos_token_id |
|
if isinstance(eos_token_id, list): |
|
eos_token_id = eos_token_id[0] |
|
logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.") |
|
generation_config.pad_token_id = eos_token_id |
|
|
|
|
|
|
|
|
|
|
|
|
|
inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs( |
|
inputs, generation_config.bos_token_id, model_kwargs |
|
) |
|
batch_size = inputs_tensor.shape[0] |
|
|
|
|
|
model_kwargs["output_attentions"] = generation_config.output_attentions |
|
model_kwargs["output_hidden_states"] = generation_config.output_hidden_states |
|
model_kwargs["use_cache"] = generation_config.use_cache |
|
|
|
accepts_attention_mask = "attention_mask" in set(inspect.signature(self.forward).parameters.keys()) |
|
requires_attention_mask = "encoder_outputs" not in model_kwargs |
|
|
|
if model_kwargs.get("attention_mask", None) is None and requires_attention_mask and accepts_attention_mask: |
|
model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation( |
|
inputs_tensor, generation_config.pad_token_id, generation_config.eos_token_id |
|
) |
|
|
|
|
|
if not self.config.is_encoder_decoder: |
|
|
|
|
|
if ( |
|
generation_config.pad_token_id is not None |
|
and len(inputs_tensor.shape) == 2 |
|
and torch.sum(inputs_tensor[:, -1] == generation_config.pad_token_id) > 0 |
|
): |
|
logger.warning( |
|
"A decoder-only architecture is being used, but right-padding was detected! For correct " |
|
"generation results, please set `padding_side='left'` when initializing the tokenizer." |
|
) |
|
|
|
|
|
input_ids = inputs_tensor if model_input_name == "input_ids" else model_kwargs.pop("input_ids") |
|
|
|
if streamer is not None: |
|
streamer.put(input_ids.cpu()) |
|
|
|
|
|
input_ids_seq_length = input_ids.shape[-1] |
|
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None |
|
if has_default_max_length and generation_config.max_new_tokens is None: |
|
warnings.warn( |
|
f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. " |
|
"This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we" |
|
" recommend using `max_new_tokens` to control the maximum length of the generation.", |
|
UserWarning, |
|
) |
|
elif generation_config.max_new_tokens is not None: |
|
if not has_default_max_length: |
|
logger.warning( |
|
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(=" |
|
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. " |
|
"Please refer to the documentation for more information. " |
|
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)" |
|
) |
|
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length |
|
|
|
if generation_config.min_length is not None and generation_config.min_length > generation_config.max_length: |
|
raise ValueError( |
|
f"Unfeasible length constraints: the minimum length ({generation_config.min_length}) is larger than" |
|
f" the maximum length ({generation_config.max_length})" |
|
) |
|
if input_ids_seq_length >= generation_config.max_length: |
|
input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids" |
|
logger.warning( |
|
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to" |
|
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider" |
|
" increasing `max_new_tokens`." |
|
) |
|
|
|
if streamer is not None and (generation_config.num_beams > 1): |
|
raise ValueError( |
|
"`streamer` cannot be used with beam search (yet!). Make sure that `num_beams` is set to 1." |
|
) |
|
|
|
if self.device.type != input_ids.device.type: |
|
warnings.warn( |
|
"You are calling .generate() with the `input_ids` being on a device type different" |
|
f" than your model's device. `input_ids` is on {input_ids.device.type}, whereas the model" |
|
f" is on {self.device.type}. You may experience unexpected behaviors or slower generation." |
|
" Please make sure that you have put `input_ids` to the" |
|
f" correct device by calling for example input_ids = input_ids.to('{self.device.type}') before" |
|
" running `.generate()`.", |
|
UserWarning, |
|
) |
|
|
|
|
|
logits_processor = self._get_logits_processor( |
|
generation_config=generation_config, |
|
input_ids_seq_length=input_ids_seq_length, |
|
encoder_input_ids=inputs_tensor, |
|
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn, |
|
logits_processor=logits_processor, |
|
) |
|
|
|
|
|
beam_scorer = CpmBeeBeamSearchScorer( |
|
batch_size=batch_size, |
|
num_beams=generation_config.num_beams, |
|
device=inputs_tensor.device, |
|
length_penalty=generation_config.length_penalty, |
|
do_early_stopping=generation_config.early_stopping, |
|
num_beam_hyps_to_keep=generation_config.num_return_sequences, |
|
max_length=generation_config.max_new_tokens, |
|
**kwargs, |
|
) |
|
|
|
input_ids, model_kwargs = self._expand_inputs_for_generation( |
|
input_ids=input_ids, |
|
expand_size=generation_config.num_beams, |
|
is_encoder_decoder=self.config.is_encoder_decoder, |
|
**model_kwargs, |
|
) |
|
|
|
return self.beam_search( |
|
input_ids, |
|
beam_scorer, |
|
repetition_penalty=repetition_penalty, |
|
logits_processor=logits_processor, |
|
max_length=generation_config.max_new_tokens, |
|
pad_token_id=generation_config.pad_token_id, |
|
eos_token_id=generation_config.eos_token_id, |
|
vocab_size=kwargs.get("vocab_size", None), |
|
output_scores=generation_config.output_scores, |
|
return_dict_in_generate=generation_config.return_dict_in_generate, |
|
synced_gpus=synced_gpus, |
|
**model_kwargs, |
|
) |
|
|
|
@torch.no_grad() |
|
def generate( |
|
self, |
|
data_list: Union[Dict, List[Dict]], |
|
tokenizer: CpmBeeTokenizer, |
|
**kwargs, |
|
): |
|
""" |
|
Override the generate for CPMBee. It will accept dict or list(dict) as input and returns dict or list(dict) |
|
with `<ans>` filled. |
|
|
|
Parameters: |
|
data_list (`dict` or `list(dict)`): |
|
The sequence used as a prompt for the generation or as model inputs to the encoder. If dict, data_list |
|
will be wrapped as a list. |
|
tokenizer: (`CpmBeeTokenizer`): |
|
The tokenizer. |
|
generation_config (`~generation.GenerationConfig`, *optional*): |
|
The generation configuration to be used as base parametrization for the generation call. `**kwargs` |
|
passed to generate matching the attributes of `generation_config` will override them. If |
|
`generation_config` is not provided, the default will be used, which had the following loading |
|
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model |
|
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s |
|
default values, whose documentation should be checked to parameterize generation. |
|
""" |
|
if isinstance(data_list, dict): |
|
data_list = [data_list] |
|
input_encoded = tokenizer(data_list, return_tensors="pt", padding=True, device=self.device) |
|
input_encoded.update(kwargs) |
|
input_encoded["vocab_size"] = tokenizer.vocab_size |
|
|
|
decode_res = self._generate(**input_encoded) |
|
|
|
for sent_id, result in enumerate(decode_res): |
|
ans_result_map: Dict[int, List[int]] = {} |
|
for raw_word_id, ans_id in result: |
|
if ans_id not in ans_result_map: |
|
ans_result_map[ans_id] = [] |
|
ans_result_map[ans_id].append(raw_word_id) |
|
|
|
answer_placeholders = input_encoded["other_info"][sent_id]["answer_placeholders"] |
|
ext_table = input_encoded["other_info"][sent_id]["ext_table"] |
|
data = data_list[sent_id] |
|
for ans_id, token_ids in ans_result_map.items(): |
|
if token_ids[-1] == tokenizer.eos_token_id: |
|
token_ids = token_ids[:-1] |
|
text = tokenizer.decode(token_ids, ext_table) |
|
path = answer_placeholders[ans_id - 1] |
|
|
|
if len(path) > 0: |
|
p = data["<ans>"] |
|
for part in path[:-1]: |
|
p = p[part] |
|
p[path[-1]] = text |
|
else: |
|
data["<ans>"] = text |
|
for ans_id in range(len(answer_placeholders)): |
|
if (ans_id + 1) not in ans_result_map: |
|
path = answer_placeholders[ans_id] |
|
p = data["<ans>"] |
|
for part in path[:-1]: |
|
p = p[part] |
|
p[path[-1]] = None |
|
return data_list |
|
|