File size: 8,589 Bytes
98441e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch CpmBee tokenizer. """

import os
import unittest

from transformers.models.cpmbee.tokenization_cpmbee import VOCAB_FILES_NAMES, CpmBeeTokenizer
from transformers.tokenization_utils import AddedToken

from ...test_tokenization_common import TokenizerTesterMixin


class CPMBeeTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
    tokenizer_class = CpmBeeTokenizer
    test_rust_tokenizer = False

    def setUp(self):
        super().setUp()

        vocab_tokens = [
            "<d>",
            "</d>",
            "<s>",
            "</s>",
            "</_>",
            "<unk>",
            "<pad>",
            "<mask>",
            "</n>",
            "我",
            "是",
            "C",
            "P",
            "M",
            "B",
            "e",
            "e",
        ]
        self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
        vocab_tokens = list(set(vocab_tokens))
        with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
            vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))

    # override test_add_tokens_tokenizer because <...> is special token in CpmBeeTokenizer.
    def test_add_tokens_tokenizer(self):
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                vocab_size = tokenizer.vocab_size
                all_size = len(tokenizer)

                self.assertNotEqual(vocab_size, 0)

                # We usually have added tokens from the start in tests because our vocab fixtures are
                # smaller than the original vocabs - let's not assert this
                # self.assertEqual(vocab_size, all_size)

                new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd"]
                added_toks = tokenizer.add_tokens(new_toks)
                vocab_size_2 = tokenizer.vocab_size
                all_size_2 = len(tokenizer)

                self.assertNotEqual(vocab_size_2, 0)
                self.assertEqual(vocab_size, vocab_size_2)
                self.assertEqual(added_toks, len(new_toks))
                self.assertEqual(all_size_2, all_size + len(new_toks))

                tokens = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l", add_special_tokens=False)

                self.assertGreaterEqual(len(tokens), 4)
                self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
                self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)

                new_toks_2 = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||;;;||;"}
                added_toks_2 = tokenizer.add_special_tokens(new_toks_2)
                vocab_size_3 = tokenizer.vocab_size
                all_size_3 = len(tokenizer)

                self.assertNotEqual(vocab_size_3, 0)
                self.assertEqual(vocab_size, vocab_size_3)
                self.assertEqual(added_toks_2, len(new_toks_2))
                self.assertEqual(all_size_3, all_size_2 + len(new_toks_2))

                tokens = tokenizer.encode(
                    ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||;;;||; l", add_special_tokens=False
                )

                self.assertGreaterEqual(len(tokens), 6)
                self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
                self.assertGreater(tokens[0], tokens[1])
                self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)
                self.assertGreater(tokens[-2], tokens[-3])
                self.assertEqual(tokens[0], tokenizer.eos_token_id)
                self.assertEqual(tokens[-2], tokenizer.pad_token_id)

    def test_added_tokens_do_lower_case(self):
        tokenizers = self.get_tokenizers(do_lower_case=True)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                if not hasattr(tokenizer, "do_lower_case") or not tokenizer.do_lower_case:
                    continue

                special_token = tokenizer.all_special_tokens[0]

                text = special_token + " aaaaa bbbbbb low cccccccccdddddddd l " + special_token
                text2 = special_token + " AAAAA BBBBBB low CCCCCCCCCDDDDDDDD l " + special_token

                toks_before_adding = tokenizer.tokenize(text)  # toks before adding new_toks

                new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd", "AAAAA BBBBBB", "CCCCCCCCCDDDDDDDD"]
                added = tokenizer.add_tokens([AddedToken(tok, lstrip=True, rstrip=True) for tok in new_toks])

                toks_after_adding = tokenizer.tokenize(text)
                toks_after_adding2 = tokenizer.tokenize(text2)

                # Rust tokenizers dont't lowercase added tokens at the time calling `tokenizer.add_tokens`,
                # while python tokenizers do, so new_toks 0 and 2 would be treated as the same, so do new_toks 1 and 3.
                self.assertIn(added, [2, 4])

                self.assertListEqual(toks_after_adding, toks_after_adding2)
                self.assertTrue(
                    len(toks_before_adding) > len(toks_after_adding),  # toks_before_adding should be longer
                )

                # Check that none of the special tokens are lowercased
                sequence_with_special_tokens = "A " + " yEs ".join(tokenizer.all_special_tokens) + " B"
                # Convert the tokenized list to str as some special tokens are tokenized like normal tokens
                # which have a prefix spacee e.g. the mask token of Albert, and cannot match the original
                # special tokens exactly.
                tokenized_sequence = "".join(tokenizer.tokenize(sequence_with_special_tokens))

                for special_token in tokenizer.all_special_tokens:
                    self.assertTrue(special_token in tokenized_sequence)

        tokenizers = self.get_tokenizers(do_lower_case=True)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                if hasattr(tokenizer, "do_lower_case") and tokenizer.do_lower_case:
                    continue

                special_token = tokenizer.all_special_tokens[0]

                text = special_token + " aaaaa bbbbbb low cccccccccdddddddd l " + special_token
                text2 = special_token + " AAAAA BBBBBB low CCCCCCCCCDDDDDDDD l " + special_token

                toks_before_adding = tokenizer.tokenize(text)  # toks before adding new_toks

                new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd", "AAAAA BBBBBB", "CCCCCCCCCDDDDDDDD"]
                added = tokenizer.add_tokens([AddedToken(tok, lstrip=True, rstrip=True) for tok in new_toks])
                self.assertIn(added, [2, 4])

                toks_after_adding = tokenizer.tokenize(text)
                toks_after_adding2 = tokenizer.tokenize(text2)

                self.assertEqual(len(toks_after_adding), len(toks_after_adding2))  # Length should still be the same
                self.assertNotEqual(
                    toks_after_adding[1], toks_after_adding2[1]
                )  # But at least the first non-special tokens should differ
                self.assertTrue(
                    len(toks_before_adding) > len(toks_after_adding),  # toks_before_adding should be longer
                )

    def test_pre_tokenization(self):
        tokenizer = CpmBeeTokenizer.from_pretrained("openbmb/cpm-bee-10b")
        texts = {"input": "你好,", "<ans>": ""}
        tokens = tokenizer(texts)
        tokens = tokens["input_ids"][0]

        input_tokens = [6, 8, 7, 6, 65678, 7, 6, 10273, 246, 7, 6, 9, 7]
        self.assertListEqual(tokens, input_tokens)

        normalized_text = "<s><root></s><s>input</s><s>你好,</s><s><ans></s>"
        reconstructed_text = tokenizer.decode(tokens)
        self.assertEqual(reconstructed_text, normalized_text)