|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Testing suite for the PyTorch CpmBee model. """ |
|
|
|
|
|
import unittest |
|
|
|
from transformers.testing_utils import is_torch_available, require_torch, tooslow |
|
|
|
from ...generation.test_utils import torch_device |
|
from ...test_configuration_common import ConfigTester |
|
from ...test_modeling_common import ModelTesterMixin, ids_tensor |
|
from ...test_pipeline_mixin import PipelineTesterMixin |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
from transformers import ( |
|
CpmBeeConfig, |
|
CpmBeeForCausalLM, |
|
CpmBeeModel, |
|
CpmBeeTokenizer, |
|
) |
|
|
|
|
|
@require_torch |
|
class CpmBeeModelTester: |
|
def __init__( |
|
self, |
|
parent, |
|
batch_size=2, |
|
seq_length=8, |
|
is_training=True, |
|
use_token_type_ids=False, |
|
use_input_mask=False, |
|
use_labels=False, |
|
use_mc_token_ids=False, |
|
vocab_size=99, |
|
hidden_size=32, |
|
num_hidden_layers=3, |
|
num_attention_heads=4, |
|
intermediate_size=37, |
|
num_buckets=32, |
|
max_distance=128, |
|
position_bias_num_segment_buckets=32, |
|
init_std=1.0, |
|
return_dict=True, |
|
): |
|
self.parent = parent |
|
self.batch_size = batch_size |
|
self.seq_length = seq_length |
|
self.is_training = is_training |
|
self.use_token_type_ids = use_token_type_ids |
|
self.use_input_mask = use_input_mask |
|
self.use_labels = use_labels |
|
self.use_mc_token_ids = use_mc_token_ids |
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.intermediate_size = intermediate_size |
|
self.num_buckets = num_buckets |
|
self.max_distance = max_distance |
|
self.position_bias_num_segment_buckets = position_bias_num_segment_buckets |
|
self.init_std = init_std |
|
self.return_dict = return_dict |
|
|
|
def prepare_config_and_inputs(self): |
|
input_ids = {} |
|
input_ids["input_ids"] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).type(torch.int32) |
|
input_ids["use_cache"] = False |
|
|
|
config = self.get_config() |
|
|
|
return (config, input_ids) |
|
|
|
def get_config(self): |
|
return CpmBeeConfig( |
|
vocab_size=self.vocab_size, |
|
hidden_size=self.hidden_size, |
|
num_hidden_layers=self.num_hidden_layers, |
|
num_attention_heads=self.num_attention_heads, |
|
dim_ff=self.intermediate_size, |
|
position_bias_num_buckets=self.num_buckets, |
|
position_bias_max_distance=self.max_distance, |
|
position_bias_num_segment_buckets=self.position_bias_num_segment_buckets, |
|
use_cache=True, |
|
init_std=self.init_std, |
|
return_dict=self.return_dict, |
|
) |
|
|
|
def create_and_check_cpmbee_model(self, config, input_ids, *args): |
|
model = CpmBeeModel(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
hidden_states = model(**input_ids).last_hidden_state |
|
|
|
self.parent.assertEqual(hidden_states.shape, (self.batch_size, self.seq_length, config.hidden_size)) |
|
|
|
def create_and_check_lm_head_model(self, config, input_ids, *args): |
|
model = CpmBeeForCausalLM(config) |
|
model.to(torch_device) |
|
input_ids["input_ids"] = input_ids["input_ids"].to(torch_device) |
|
model.eval() |
|
|
|
model_output = model(**input_ids) |
|
self.parent.assertEqual( |
|
model_output.logits.shape, |
|
(self.batch_size, self.seq_length, config.vocab_size), |
|
) |
|
|
|
def prepare_config_and_inputs_for_common(self): |
|
config, inputs_dict = self.prepare_config_and_inputs() |
|
return config, inputs_dict |
|
|
|
|
|
@require_torch |
|
class CpmBeeModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): |
|
all_model_classes = (CpmBeeModel, CpmBeeForCausalLM) if is_torch_available() else () |
|
pipeline_model_mapping = ( |
|
{"feature-extraction": CpmBeeModel, "text-generation": CpmBeeForCausalLM} if is_torch_available() else {} |
|
) |
|
|
|
test_pruning = False |
|
test_missing_keys = False |
|
test_mismatched_shapes = False |
|
test_head_masking = False |
|
test_resize_embeddings = False |
|
|
|
def setUp(self): |
|
self.model_tester = CpmBeeModelTester(self) |
|
self.config_tester = ConfigTester(self, config_class=CpmBeeConfig) |
|
|
|
def test_config(self): |
|
self.config_tester.create_and_test_config_common_properties() |
|
self.config_tester.create_and_test_config_to_json_string() |
|
self.config_tester.create_and_test_config_to_json_file() |
|
self.config_tester.create_and_test_config_from_and_save_pretrained() |
|
self.config_tester.check_config_can_be_init_without_params() |
|
self.config_tester.check_config_arguments_init() |
|
|
|
def test_inputs_embeds(self): |
|
unittest.skip("CPMBee doesn't support input_embeds.")(self.test_inputs_embeds) |
|
|
|
def test_retain_grad_hidden_states_attentions(self): |
|
unittest.skip( |
|
"CPMBee doesn't support retain grad in hidden_states or attentions, because prompt management will peel off the output.hidden_states from graph.\ |
|
So is attentions. We strongly recommand you use loss to tune model." |
|
)(self.test_retain_grad_hidden_states_attentions) |
|
|
|
def test_cpmbee_model(self): |
|
config, inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_cpmbee_model(config, inputs) |
|
|
|
def test_cpmbee_lm_head_model(self): |
|
config, inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_lm_head_model(config, inputs) |
|
|
|
|
|
@require_torch |
|
class CpmBeeForCausalLMlIntegrationTest(unittest.TestCase): |
|
@tooslow |
|
def test_simple_generation(self): |
|
texts = {"input": "今天天气不错,", "<ans>": ""} |
|
model = CpmBeeForCausalLM.from_pretrained("openbmb/cpm-bee-10b") |
|
tokenizer = CpmBeeTokenizer.from_pretrained("openbmb/cpm-bee-10b") |
|
output_texts = model.generate(texts, tokenizer) |
|
expected_output = {"input": "今天天气不错,", "<ans>": "适合睡觉。"} |
|
self.assertEqual(expected_output["<ans>"], output_texts["<ans>"]) |
|
|