Token Classification
spaCy
English
Eval Results
File size: 4,422 Bytes
ef1c7f0
 
 
 
4767762
8f1f45d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef1c7f0
 
82b05af
ef1c7f0
 
d57d734
 
8f1f45d
 
d57d734
8f1f45d
 
 
 
 
6c07f3a
3b908bb
ee973ab
8388aca
6c07f3a
ef1c7f0
86b2325
4e7dec6
 
 
 
 
f01a0b0
 
 
4e7dec6
 
ef1c7f0
 
 
 
 
 
 
 
df38e94
ef1c7f0
78c0802
ef1c7f0
6c07f3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef1c7f0
 
 
 
 
 
6c07f3a
ef1c7f0
6c07f3a
 
 
 
 
 
 
 
 
 
 
 
 
 
ef1c7f0
 
 
6c07f3a
 
 
ee973ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c07f3a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
---
tags:
- spacy
- token-classification
widget:
- text: >-
    Section 319 Cr.P.C. contemplates a situation where the evidence adduced by
    the prosecution for Respondent No.3-G. Sambiah on 20th June 1984
- text: |
    In The High Court Of Kerala At Ernakulam

    Crl Mc No. 1622 of 2006()


    1. T.R.Ajayan, S/O. O.Raman,
                          ...  Petitioner

                            Vs



    1. M.Ravindran,
                           ...       Respondent

    2. Mrs. Nirmala Dinesh, W/O. Dinesh,

                    For Petitioner  :Sri.A.Kumar

                    For Respondent  :Smt.M.K.Pushpalatha

    The Hon'ble Mr. Justice P.R.Raman
    The Hon'ble Mr. Justice V.K.Mohanan

     Dated :07/01/2008

     O R D E R
language:
- en
license: apache-2.0
model-index:
- name: en_legal_ner_trf
  results:
  - task:
      type: token-classification
      name: Named Entity Recognition
    metrics:
    - type: F1-Score
      value: 91.076
      name: Test F1-Score
datasets:
- opennyaiorg/InLegalNER
---
# Paper details
[Named Entity Recognition in Indian court judgments](https://aclanthology.org/2022.nllp-1.15/)
[Arxiv](https://arxiv.org/abs/2211.03442)

---
Indian Legal Named Entity Recognition(NER): Identifying relevant named entities in an Indian legal judgement using legal NER trained on [spacy](https://github.com/explosion/spaCy).

### Scores

| Type | Score |
| --- | --- |
| **F1-Score** | **91.076** |
| `Precision` | 91.979 |
| `Recall` | 90.19 |


| Feature | Description |
| --- | --- |
| **Name** | `en_legal_ner_trf` |
| **Version** | `3.2.0` |
| **spaCy** | `>=3.2.2,<3.3.0` |
| **Default Pipeline** | `transformer`, `ner` |
| **Components** | `transformer`, `ner` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | [InLegalNER Train Data](https://storage.googleapis.com/indianlegalbert/OPEN_SOURCED_FILES/NER/NER_TRAIN.zip) [GitHub](https://github.com/Legal-NLP-EkStep/legal_NER)|
| **License** | `MIT` |
| **Author** | [Aman Tiwari](https://www.linkedin.com/in/amant555/) |

## Load Pretrained Model

Install the model using pip

```sh
pip install https://huggingface.co/opennyaiorg/en_legal_ner_trf/resolve/main/en_legal_ner_trf-any-py3-none-any.whl
```

Using pretrained NER model

```python
# Using spacy.load().
import spacy
nlp = spacy.load("en_legal_ner_trf")
text = "Section 319 Cr.P.C. contemplates a situation where the evidence adduced by the prosecution for Respondent No.3-G. Sambiah on 20th June 1984"
doc = nlp(text)

# Print indentified entites
for ent in doc.ents:
     print(ent,ent.label_)

##OUTPUT     
#Section 319 PROVISION
#Cr.P.C. STATUTE
#G. Sambiah RESPONDENT
#20th June 1984 DATE
```


### Label Scheme

<details>

<summary>View label scheme (14 labels for 1 components)</summary>

| ENTITY | BELONGS TO |
| --- | --- |
| `LAWYER` | PREAMBLE |
| `COURT` | PREAMBLE, JUDGEMENT |
| `JUDGE` | PREAMBLE, JUDGEMENT |
| `PETITIONER` | PREAMBLE, JUDGEMENT |
| `RESPONDENT` | PREAMBLE, JUDGEMENT |
| `CASE_NUMBER` | JUDGEMENT | 
| `GPE` | JUDGEMENT |
| `DATE` | JUDGEMENT |
| `ORG` | JUDGEMENT |
| `STATUTE` | JUDGEMENT |
| `WITNESS` | JUDGEMENT |
| `PRECEDENT` | JUDGEMENT |
| `PROVISION` | JUDGEMENT |
| `OTHER_PERSON` | JUDGEMENT |

</details>

## Author - Publication

```
@inproceedings{kalamkar-etal-2022-named,
    title = "Named Entity Recognition in {I}ndian court judgments",
    author = "Kalamkar, Prathamesh  and
      Agarwal, Astha  and
      Tiwari, Aman  and
      Gupta, Smita  and
      Karn, Saurabh  and
      Raghavan, Vivek",
    booktitle = "Proceedings of the Natural Legal Language Processing Workshop 2022",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, United Arab Emirates (Hybrid)",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2022.nllp-1.15",
    doi = "10.18653/v1/2022.nllp-1.15",
    pages = "184--193",
    abstract = "Identification of named entities from legal texts is an essential building block for developing other legal Artificial Intelligence applications. Named Entities in legal texts are slightly different and more fine-grained than commonly used named entities like Person, Organization, Location etc. In this paper, we introduce a new corpus of 46545 annotated legal named entities mapped to 14 legal entity types. The Baseline model for extracting legal named entities from judgment text is also developed.",
}
```