zhichao-geng's picture
Update README.md
b21e646 verified
---
language: en
license: apache-2.0
tags:
- learned sparse
- opensearch
- transformers
- retrieval
- passage-retrieval
- document-expansion
- bag-of-words
---
# opensearch-neural-sparse-encoding-doc-v1
## Select the model
The model should be selected considering search relevance, model inference and retrieval efficiency(FLOPS). We benchmark models' **zero-shot performance** on a subset of BEIR benchmark: TrecCovid,NFCorpus,NQ,HotpotQA,FiQA,ArguAna,Touche,DBPedia,SCIDOCS,FEVER,Climate FEVER,SciFact,Quora.
Overall, the v2 series of models have better search relevance, efficiency and inference speed than the v1 series. The specific advantages and disadvantages may vary across different datasets.
| Model | Inference-free for Retrieval | Model Parameters | AVG NDCG@10 | AVG FLOPS |
|-------|------------------------------|------------------|-------------|-----------|
| [opensearch-neural-sparse-encoding-v1](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-v1) | | 133M | 0.524 | 11.4 |
| [opensearch-neural-sparse-encoding-v2-distill](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-v2-distill) | | 67M | 0.528 | 8.3 |
| [opensearch-neural-sparse-encoding-doc-v1](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v1) | ✔️ | 133M | 0.490 | 2.3 |
| [opensearch-neural-sparse-encoding-doc-v2-distill](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill) | ✔️ | 67M | 0.504 | 1.8 |
| [opensearch-neural-sparse-encoding-doc-v2-mini](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v2-mini) | ✔️ | 23M | 0.497 | 1.7 |
## Overview
- **Paper**: [Towards Competitive Search Relevance For Inference-Free Learned Sparse Retrievers](https://arxiv.org/abs/2411.04403)
- **Fine-tuning sample**: [opensearch-sparse-model-tuning-sample](https://github.com/zhichao-aws/opensearch-sparse-model-tuning-sample)
This is a learned sparse retrieval model. It encodes the documents to 30522 dimensional **sparse vectors**. For queries, it just use a tokenizer and a weight look-up table to generate sparse vectors. The non-zero dimension index means the corresponding token in the vocabulary, and the weight means the importance of the token. And the similarity score is the inner product of query/document sparse vectors. In the real-world use case, the search performance of opensearch-neural-sparse-encoding-v1 is comparable to BM25.
This model is trained on MS MARCO dataset.
OpenSearch neural sparse feature supports learned sparse retrieval with lucene inverted index. Link: https://opensearch.org/docs/latest/query-dsl/specialized/neural-sparse/. The indexing and search can be performed with OpenSearch high-level API.
## Usage (HuggingFace)
This model is supposed to run inside OpenSearch cluster. But you can also use it outside the cluster, with HuggingFace models API.
```python
import json
import itertools
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
# get sparse vector from dense vectors with shape batch_size * seq_len * vocab_size
def get_sparse_vector(feature, output):
values, _ = torch.max(output*feature["attention_mask"].unsqueeze(-1), dim=1)
values = torch.log(1 + torch.relu(values))
values[:,special_token_ids] = 0
return values
# transform the sparse vector to a dict of (token, weight)
def transform_sparse_vector_to_dict(sparse_vector):
sample_indices,token_indices=torch.nonzero(sparse_vector,as_tuple=True)
non_zero_values = sparse_vector[(sample_indices,token_indices)].tolist()
number_of_tokens_for_each_sample = torch.bincount(sample_indices).cpu().tolist()
tokens = [transform_sparse_vector_to_dict.id_to_token[_id] for _id in token_indices.tolist()]
output = []
end_idxs = list(itertools.accumulate([0]+number_of_tokens_for_each_sample))
for i in range(len(end_idxs)-1):
token_strings = tokens[end_idxs[i]:end_idxs[i+1]]
weights = non_zero_values[end_idxs[i]:end_idxs[i+1]]
output.append(dict(zip(token_strings, weights)))
return output
# download the idf file from model hub. idf is used to give weights for query tokens
def get_tokenizer_idf(tokenizer):
from huggingface_hub import hf_hub_download
local_cached_path = hf_hub_download(repo_id="opensearch-project/opensearch-neural-sparse-encoding-doc-v1", filename="idf.json")
with open(local_cached_path) as f:
idf = json.load(f)
idf_vector = [0]*tokenizer.vocab_size
for token,weight in idf.items():
_id = tokenizer._convert_token_to_id_with_added_voc(token)
idf_vector[_id]=weight
return torch.tensor(idf_vector)
# load the model
model = AutoModelForMaskedLM.from_pretrained("opensearch-project/opensearch-neural-sparse-encoding-doc-v1")
tokenizer = AutoTokenizer.from_pretrained("opensearch-project/opensearch-neural-sparse-encoding-doc-v1")
idf = get_tokenizer_idf(tokenizer)
# set the special tokens and id_to_token transform for post-process
special_token_ids = [tokenizer.vocab[token] for token in tokenizer.special_tokens_map.values()]
get_sparse_vector.special_token_ids = special_token_ids
id_to_token = ["" for i in range(tokenizer.vocab_size)]
for token, _id in tokenizer.vocab.items():
id_to_token[_id] = token
transform_sparse_vector_to_dict.id_to_token = id_to_token
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
# encode the query
feature_query = tokenizer([query], padding=True, truncation=True, return_tensors='pt', return_token_type_ids=False)
input_ids = feature_query["input_ids"]
batch_size = input_ids.shape[0]
query_vector = torch.zeros(batch_size, tokenizer.vocab_size)
query_vector[torch.arange(batch_size).unsqueeze(-1), input_ids] = 1
query_sparse_vector = query_vector*idf
# encode the document
feature_document = tokenizer([document], padding=True, truncation=True, return_tensors='pt', return_token_type_ids=False)
output = model(**feature_document)[0]
document_sparse_vector = get_sparse_vector(feature_document, output)
# get similarity score
sim_score = torch.matmul(query_sparse_vector[0],document_sparse_vector[0])
print(sim_score) # tensor(12.8465, grad_fn=<DotBackward0>)
query_token_weight = transform_sparse_vector_to_dict(query_sparse_vector)[0]
document_query_token_weight = transform_sparse_vector_to_dict(document_sparse_vector)[0]
for token in sorted(query_token_weight, key=lambda x:query_token_weight[x], reverse=True):
if token in document_query_token_weight:
print("score in query: %.4f, score in document: %.4f, token: %s"%(query_token_weight[token],document_query_token_weight[token],token))
# result:
# score in query: 5.7729, score in document: 1.0552, token: ny
# score in query: 4.5684, score in document: 1.1697, token: weather
# score in query: 3.5895, score in document: 0.3932, token: now
```
The above code sample shows an example of neural sparse search. Although there is no overlap token in original query and document, but this model performs a good match.
## Detailed Search Relevance
<div style="overflow-x: auto;">
| Model | Average | Trec Covid | NFCorpus | NQ | HotpotQA | FiQA | ArguAna | Touche | DBPedia | SCIDOCS | FEVER | Climate FEVER | SciFact | Quora |
|-------|---------|------------|----------|----|----------|------|---------|--------|---------|---------|-------|---------------|---------|-------|
| [opensearch-neural-sparse-encoding-v1](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-v1) | 0.524 | 0.771 | 0.360 | 0.553 | 0.697 | 0.376 | 0.508 | 0.278 | 0.447 | 0.164 | 0.821 | 0.263 | 0.723 | 0.856 |
| [opensearch-neural-sparse-encoding-v2-distill](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-v2-distill) | 0.528 | 0.775 | 0.347 | 0.561 | 0.685 | 0.374 | 0.551 | 0.278 | 0.435 | 0.173 | 0.849 | 0.249 | 0.722 | 0.863 |
| [opensearch-neural-sparse-encoding-doc-v1](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v1) | 0.490 | 0.707 | 0.352 | 0.521 | 0.677 | 0.344 | 0.461 | 0.294 | 0.412 | 0.154 | 0.743 | 0.202 | 0.716 | 0.788 |
| [opensearch-neural-sparse-encoding-doc-v2-distill](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill) | 0.504 | 0.690 | 0.343 | 0.528 | 0.675 | 0.357 | 0.496 | 0.287 | 0.418 | 0.166 | 0.818 | 0.224 | 0.715 | 0.841 |
| [opensearch-neural-sparse-encoding-doc-v2-mini](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v2-mini) | 0.497 | 0.709 | 0.336 | 0.510 | 0.666 | 0.338 | 0.480 | 0.285 | 0.407 | 0.164 | 0.812 | 0.216 | 0.699 | 0.837 |
</div>
## License
This project is licensed under the [Apache v2.0 License](https://github.com/opensearch-project/neural-search/blob/main/LICENSE).
## Copyright
Copyright OpenSearch Contributors. See [NOTICE](https://github.com/opensearch-project/neural-search/blob/main/NOTICE) for details.