ireneisdoomed commited on
Commit
2fd7f0b
1 Parent(s): da9ae65

chore: update model

Browse files
Files changed (4) hide show
  1. .gitattributes +1 -0
  2. README.md +169 -0
  3. classifier.skops +3 -0
  4. config.json +155 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ classifier.skops filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sklearn
3
+ tags:
4
+ - sklearn
5
+ - skops
6
+ - tabular-classification
7
+ model_format: skops
8
+ model_file: classifier.skops
9
+ widget:
10
+ - structuredData:
11
+ distanceTssMean:
12
+ - 0.2199999988079071
13
+ - 0.18174278736114502
14
+ - 0.36000001430511475
15
+ distanceTssMinimum:
16
+ - 0.2199999988079071
17
+ - 0.05885494500398636
18
+ - 0.36000001430511475
19
+ eqtlColocClppMaximum:
20
+ - 0.0
21
+ - 0.4752329885959625
22
+ - 0.0
23
+ eqtlColocClppMaximumNeighborhood:
24
+ - 0.0
25
+ - -4.0
26
+ - 0.0
27
+ eqtlColocLlrMaximum:
28
+ - 0.0
29
+ - 7.234378337860107
30
+ - 0.0
31
+ eqtlColocLlrMaximumNeighborhood:
32
+ - 0.0
33
+ - 0.8298853635787964
34
+ - 0.0
35
+ pqtlColocClppMaximum:
36
+ - 0.0
37
+ - 0.0
38
+ - 0.0
39
+ pqtlColocClppMaximumNeighborhood:
40
+ - 0.0
41
+ - 0.0
42
+ - 0.0
43
+ pqtlColocLlrMaximum:
44
+ - 0.0
45
+ - 0.0
46
+ - 0.0
47
+ pqtlColocLlrMaximumNeighborhood:
48
+ - 0.0
49
+ - 0.0
50
+ - 0.0
51
+ sqtlColocClppMaximum:
52
+ - 0.0
53
+ - 0.0
54
+ - 0.0
55
+ sqtlColocClppMaximumNeighborhood:
56
+ - 0.0
57
+ - 0.0
58
+ - 0.0
59
+ sqtlColocLlrMaximum:
60
+ - 0.0
61
+ - 0.0
62
+ - 0.0
63
+ sqtlColocLlrMaximumNeighborhood:
64
+ - 0.0
65
+ - 0.0
66
+ - 0.0
67
+ studyLocusId:
68
+ - -5432966661404469451
69
+ - 3577612979987322946
70
+ - -1490404886320085047
71
+ tuqtlColocClppMaximum:
72
+ - 0.0
73
+ - 0.4703633785247803
74
+ - 0.0
75
+ tuqtlColocClppMaximumNeighborhood:
76
+ - 0.0
77
+ - -2.303677558898926
78
+ - 0.0
79
+ tuqtlColocLlrMaximum:
80
+ - 0.0
81
+ - 7.182735443115234
82
+ - 0.0
83
+ tuqtlColocLlrMaximumNeighborhood:
84
+ - 0.0
85
+ - 0.8265543580055237
86
+ - 0.0
87
+ vepMaximum:
88
+ - 0.0
89
+ - 0.04004563018679619
90
+ - 0.0
91
+ vepMaximumNeighborhood:
92
+ - 0.0
93
+ - 0.04004563018679619
94
+ - 0.0
95
+ vepMean:
96
+ - 0.0
97
+ - 0.026208732277154922
98
+ - 0.0
99
+ vepMeanNeighborhood:
100
+ - 0.0
101
+ - 0.026208732277154922
102
+ - 0.0
103
+ ---
104
+
105
+ # Model description
106
+
107
+ The locus-to-gene (L2G) model derives features to prioritise likely causal genes at each GWAS locus based on genetic and functional genomics features. The main categories of predictive features are:
108
+
109
+ - Distance: (from credible set variants to gene)
110
+ - Molecular QTL Colocalization
111
+ - Chromatin Interaction: (e.g., promoter-capture Hi-C)
112
+ - Variant Pathogenicity: (from VEP)
113
+
114
+ More information at: https://opentargets.github.io/gentropy/python_api/methods/l2g/_l2g/
115
+
116
+
117
+ ## Intended uses & limitations
118
+
119
+ [More Information Needed]
120
+
121
+ ## Training Procedure
122
+
123
+ Gradient Boosting Classifier
124
+
125
+ ### Hyperparameters
126
+
127
+ <details>
128
+ <summary> Click to expand </summary>
129
+
130
+ | Hyperparameter | Value |
131
+ |--------------------------|--------------|
132
+ | ccp_alpha | 0.0 |
133
+ | criterion | friedman_mse |
134
+ | init | |
135
+ | learning_rate | 0.1 |
136
+ | loss | log_loss |
137
+ | max_depth | 5 |
138
+ | max_features | |
139
+ | max_leaf_nodes | |
140
+ | min_impurity_decrease | 0.0 |
141
+ | min_samples_leaf | 1 |
142
+ | min_samples_split | 2 |
143
+ | min_weight_fraction_leaf | 0.0 |
144
+ | n_estimators | 100 |
145
+ | n_iter_no_change | |
146
+ | random_state | 42 |
147
+ | subsample | 1.0 |
148
+ | tol | 0.0001 |
149
+ | validation_fraction | 0.1 |
150
+ | verbose | 0 |
151
+ | warm_start | False |
152
+
153
+ </details>
154
+
155
+ # How to Get Started with the Model
156
+
157
+ To use the model, you can load it using the `LocusToGeneModel.load_from_hub` method. This will return a `LocusToGeneModel` object that can be used to make predictions on a feature matrix.
158
+ The model can then be used to make predictions using the `predict` method.
159
+
160
+ More information can be found at: https://opentargets.github.io/gentropy/python_api/methods/l2g/model/
161
+
162
+
163
+ # Citation
164
+
165
+ https://doi.org/10.1038/s41588-021-00945-5
166
+
167
+ # License
168
+
169
+ MIT
classifier.skops ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e5d3a8334a1ecb5d49bd6f46ccc38f84adf931a10a6363491b544a2206c5a78
3
+ size 2831537
config.json ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "sklearn": {
3
+ "columns": [
4
+ "studyLocusId",
5
+ "distanceTssMean",
6
+ "distanceTssMinimum",
7
+ "vepMaximumNeighborhood",
8
+ "vepMaximum",
9
+ "vepMeanNeighborhood",
10
+ "vepMean",
11
+ "eqtlColocClppMaximum",
12
+ "eqtlColocClppMaximumNeighborhood",
13
+ "pqtlColocClppMaximum",
14
+ "pqtlColocClppMaximumNeighborhood",
15
+ "sqtlColocClppMaximum",
16
+ "sqtlColocClppMaximumNeighborhood",
17
+ "tuqtlColocClppMaximum",
18
+ "tuqtlColocClppMaximumNeighborhood",
19
+ "eqtlColocLlrMaximum",
20
+ "eqtlColocLlrMaximumNeighborhood",
21
+ "pqtlColocLlrMaximum",
22
+ "pqtlColocLlrMaximumNeighborhood",
23
+ "sqtlColocLlrMaximum",
24
+ "sqtlColocLlrMaximumNeighborhood",
25
+ "tuqtlColocLlrMaximum",
26
+ "tuqtlColocLlrMaximumNeighborhood"
27
+ ],
28
+ "environment": [
29
+ "scikit-learn=1.5.1"
30
+ ],
31
+ "example_input": {
32
+ "distanceTssMean": [
33
+ 0.2199999988079071,
34
+ 0.18174278736114502,
35
+ 0.36000001430511475
36
+ ],
37
+ "distanceTssMinimum": [
38
+ 0.2199999988079071,
39
+ 0.05885494500398636,
40
+ 0.36000001430511475
41
+ ],
42
+ "eqtlColocClppMaximum": [
43
+ 0.0,
44
+ 0.4752329885959625,
45
+ 0.0
46
+ ],
47
+ "eqtlColocClppMaximumNeighborhood": [
48
+ 0.0,
49
+ -4.0,
50
+ 0.0
51
+ ],
52
+ "eqtlColocLlrMaximum": [
53
+ 0.0,
54
+ 7.234378337860107,
55
+ 0.0
56
+ ],
57
+ "eqtlColocLlrMaximumNeighborhood": [
58
+ 0.0,
59
+ 0.8298853635787964,
60
+ 0.0
61
+ ],
62
+ "pqtlColocClppMaximum": [
63
+ 0.0,
64
+ 0.0,
65
+ 0.0
66
+ ],
67
+ "pqtlColocClppMaximumNeighborhood": [
68
+ 0.0,
69
+ 0.0,
70
+ 0.0
71
+ ],
72
+ "pqtlColocLlrMaximum": [
73
+ 0.0,
74
+ 0.0,
75
+ 0.0
76
+ ],
77
+ "pqtlColocLlrMaximumNeighborhood": [
78
+ 0.0,
79
+ 0.0,
80
+ 0.0
81
+ ],
82
+ "sqtlColocClppMaximum": [
83
+ 0.0,
84
+ 0.0,
85
+ 0.0
86
+ ],
87
+ "sqtlColocClppMaximumNeighborhood": [
88
+ 0.0,
89
+ 0.0,
90
+ 0.0
91
+ ],
92
+ "sqtlColocLlrMaximum": [
93
+ 0.0,
94
+ 0.0,
95
+ 0.0
96
+ ],
97
+ "sqtlColocLlrMaximumNeighborhood": [
98
+ 0.0,
99
+ 0.0,
100
+ 0.0
101
+ ],
102
+ "studyLocusId": [
103
+ -5432966661404469451,
104
+ 3577612979987322946,
105
+ -1490404886320085047
106
+ ],
107
+ "tuqtlColocClppMaximum": [
108
+ 0.0,
109
+ 0.4703633785247803,
110
+ 0.0
111
+ ],
112
+ "tuqtlColocClppMaximumNeighborhood": [
113
+ 0.0,
114
+ -2.303677558898926,
115
+ 0.0
116
+ ],
117
+ "tuqtlColocLlrMaximum": [
118
+ 0.0,
119
+ 7.182735443115234,
120
+ 0.0
121
+ ],
122
+ "tuqtlColocLlrMaximumNeighborhood": [
123
+ 0.0,
124
+ 0.8265543580055237,
125
+ 0.0
126
+ ],
127
+ "vepMaximum": [
128
+ 0.0,
129
+ 0.04004563018679619,
130
+ 0.0
131
+ ],
132
+ "vepMaximumNeighborhood": [
133
+ 0.0,
134
+ 0.04004563018679619,
135
+ 0.0
136
+ ],
137
+ "vepMean": [
138
+ 0.0,
139
+ 0.026208732277154922,
140
+ 0.0
141
+ ],
142
+ "vepMeanNeighborhood": [
143
+ 0.0,
144
+ 0.026208732277154922,
145
+ 0.0
146
+ ]
147
+ },
148
+ "model": {
149
+ "file": "classifier.skops"
150
+ },
151
+ "model_format": "skops",
152
+ "task": "tabular-classification",
153
+ "use_intelex": false
154
+ }
155
+ }