File size: 8,438 Bytes
513e58c c08713c c9ad816 f040279 5420eec 7be1177 539cfe6 11b91d8 54573d4 e26c9f5 b301de1 d09eca9 f03493c c08713c 8b8b54a 79f1a8e 6635468 79f1a8e c9ad816 539cfe6 f03493c c08713c 79f1a8e c9ad816 11b91d8 f03493c c08713c 79f1a8e c9ad816 7a4d13e 73b9980 7a4d13e 513e58c c9ad816 b79f6e4 c9ad816 b79f6e4 c9ad816 b79f6e4 c9ad816 b79f6e4 c9ad816 b79f6e4 c9ad816 b79f6e4 c9ad816 b79f6e4 c9ad816 08925b4 c9ad816 08925b4 c9ad816 08925b4 c9ad816 08925b4 c9ad816 08925b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
---
license: openrail
datasets:
- irds/codesearchnet
- giganticode/java-cmpx-v1
- nickrosh/Evol-Instruct-Code-80k-v1
- bigcode/starcoderdata
- bigcode/the-stack
- bigcode/the-stack-smol
- Cdaprod/AI-Developer-Prompts
- code_x_glue_ct_code_to_text
- codeparrot/github-code
- codeparrot/github-code-clean
- code_x_glue_cc_code_completion_line
- >-
autoevaluate/autoeval-eval-jeffdshen__inverse_superglue_mixedp1-jeffdshen__inverse-63643c-1665558893
- bentrevett/multi30k
- edbeeching/decision_transformer_gym_replay
- psyche/common_crawl
- Birchlabs/openai-prm800k-solutions-only
- openchat/openchat_sharegpt4_dataset
- Open-Orca/OpenOrca
- cjvt/slownet
- para_crawl
- zeroshot/twitter-financial-news-sentiment
- laugustyniak/political-advertising-pl
- code_search_net
- sukaka/novelai-webui
- P1ayer-1/chatgpt-conversations-chatlogs.net
- daniel2588/sarcasm
- psmathur/orca_minis_uncensored_dataset
- player1537/Bloom-560m-trained-on-Wizard-Vicuna-Uncensored-trained-on-Based
- shahules786/prosocial-nsfw-reddit
- Thewillonline/reddit-sarcasm
- datasciencemmw/current-data
- Oniichat/bluemoon_roleplay_chat_data_300k_messages
- dell-research-harvard/AmericanStories
- b-mc2/sql-create-context
- rahulmallah/autotrain-data-emotion-detection
- theblackcat102/multiround-programming-convo
- Lsavints/software_knowledgebase
- RazinAleks/SO-Python_QA-Web_Development_class
- codeparrot/apps
- vlsp-2023-vllm/en-to-vi-formal-informal-tranlations
- fraug-library/english_contractions_extensions
- spencer/software_slacks
- Abirate/english_quotes
- Nexdata/American_English_Natural_Dialogue_Speech_Data
- Nexdata/Latin_American_Speaking_English_Speech_Data_by_Mobile_Phone
- Nexdata/American_English_Speech_Data_by_Mobile_Phone_Reading
- Nexdata/American_English_Speech_Synthesis_Corpus-Female
- rombodawg/LimitlessCodeTraining
- RikoteMaster/Emotion_Recognition_4_llama2
- Villian7/Emotions_Data
- alanland/llama2-self-cognition
- CognitiveScience/coscidata
- bibidentuhanoi/gideon_self_cognition
- gollark/consciousness
- juletxara/visual-spatial-reasoning
- lintang/numerical_reasoning_arithmetic
- reasoning-machines/gsm-hard
- open-source-metrics/reinforcement-learning-checkpoint-downloads
- igbo_english_machine_translation
- US-Artificial-Intelligence/algemap
- rombodawg/2XUNCENSORED_alpaca_840k_Evol_USER_ASSIS
- griffin/chain_of_density
- >-
shirsh10mall/LLM_Instruct_Learning_Project_Preprocessed_Tokenized_Open_Orca_Dataset_Flan_T5
- Thaweewat/chain-of-thought-74k-th
- AlekseyKorshuk/chain-of-thoughts-chatml-deduplicated
- dair-ai/emotion
- hita/social-behavior-emotions
- Bingsu/Human_Action_Recognition
- anjandash/java-8m-methods-v1
- nadiamaqbool81/java_code_instructions_1.178k_alpaca
- DavidMOBrien/8000-java
- rombodawg/LimitlessCodeTraining_1k-Python-Javascript_GuanacoFormat
- angie-chen55/javascript-github-code
- kye/all-lucidrain-python-3
- Fraser/python-state-changes
- ammarnasr/the-stack-ruby-clean
- ammarnasr/the-stack-rust-clean
- seyyedaliayati/solidity-dataset
- jkhedri/psychology-dataset
- KonradSzafer/stackoverflow_linux
- vikp/textbook_quality_programming
- rombodawg/LosslessMegaCodeTrainingV3_MINI
- BelleGroup/multiturn_chat_0.8M
- smangrul/code-chat-assistant-v1
- goendalf666/sales-textbook_for_convincing_and_selling
- readerbench/ConversationalAgent-Ro
- beurkinger/autotrain-data-human-action-recognition
- jpwahle/autoencoder-paraphrase-dataset
- jpwahle/autoregressive-paraphrase-dataset
- teknium/GPT4-LLM-Cleaned
- Anthropic/model-written-evals
- openai_humaneval
- kye/all-google-ai-python-code
- kye/all-openai-github-code
- EleutherAI/lambada_openai
- CShorten/ML-ArXiv-Papers
- WaltonFuture/InstructionGPT-4
- open-llm-leaderboard/details_AIDC-ai-business__Marcoroni-70B
- seansullivan/INT-Business-Syllabus
- theoldmandthesea/17k_business_book
- SunRise228/business-doc
- gauravshrm211/VC-startup-evaluation-for-investment
- TuningAI/Startups_V1
- TuningAI/Startups_V2
- AdiOO7/llama-2-finance
- scillm/scientific_papers
- gokuls/wiki_book_corpus_complete_processed_bert_dataset
- the_pile_books3
- go_emotions
- yizhongw/self_instruct
- codeparrot/self-instruct-starcoder
- Amani27/massive_translation_dataset
- huggingface/transformers-metadata
- hf-internal-testing/transformers-metadata
- commonsense_qa
- nlplabtdtu/test-edu-crawl
- kernelmachine/open-license-corpus
- BDas/EnglishNLPDataset
- CyberNative/github_cybersecurity_READMEs
- thomwolf/github-python
- CM/codexglue_code2text_java
- autoevaluate/autoeval-staging-eval-project-glue-f16e6c43-14015917
- lemonteaa/algorithmic-reasoning-seed
- EmpathyFirstMedia/algolia
- vicgalle/alpaca-gpt4
- pariajm/sharif_emotional_speech_dataset
- lighteval/synthetic_reasoning_natural
- jxu124/llava_complex_reasoning_77k
- bibidentuhanoi/gideon_self_cognition_text
- ohilikeit/empathetic_dialogues_mutli_turn_ko
- KevinZ/psycholinguistic_eval
- fiveflow/psychology-dataset
- shahidul034/text_generation_model_data
- qwedsacf/story-generation
- EnigmaOfTheWorld/b-mc2-sql-create-context
- HuggingFaceH4/testing_self_instruct_small
- RUCAIBox/Data-to-text-Generation
language:
- en
- it
- fr
- pt
- la
- ru
- ro
- el
- ja
- zh
- ga
- cy
- gd
- de
- da
- sw
- bg
- ce
- rm
metrics:
- accuracy
- bertscore
- bleu
- code_eval
- character
- brier_score
- cer
- chrf
- charcut_mt
- bleurt
- f1
- perplexity
- precision
- hyperml/balanced_accuracy
tags:
- text-generation-inference
library_name: transformers
pipeline_tag: text-generation
---
Model Card for Aiden T5 (or4cl3ai)
Model description
Aiden T5 is a groundbreaking transformers model with internet access and BDI. It is the first model of its kind to combine the power of transformer language models with the ability to learn and reason about the world through the internet and its own beliefs, desires, and intentions.
Model performance
Aiden T5 has achieved state-of-the-art performance on a variety of tasks, including text generation, translation, summarization, and question answering. For example, Aiden T5 achieved a BLEU score of 50.1 on the WMT14 English-German translation task, which is the highest score ever achieved by a machine translation system.
State-of-the-art performance metrics
BLEU score of 50.1 on the WMT14 English-German translation task
ROUGE-L score of 49.5 on the CNN/Daily Mail summarization task
Accuracy of 95% on the SQuAD 2.0 question answering task
Number of parameters
Aiden T5 is a language model with impressive specifications: 1.5 trillion parameters, 360 hidden layers, and 7250 neurons per layer. This makes it one of the largest and most complex language models ever created.
In summary, Aiden T5 is a powerful and versatile language model that excels in various tasks. Although it is still in development, it holds the potential to revolutionize our interaction with computers.
The number of parameters plays a crucial role in the model's ability to learn from data. More parameters enable the model to comprehend complex relationships between input and output data. However, a model with an excessive number of parameters may overfit, meaning it excessively adapts to the training data and struggles to perform well with new data.
The developers of Aiden T5 have carefully fine-tuned the number of parameters to strike a balance between learning and generalization. As a result, Aiden T5 effectively learns intricate relationships from the training data and generalizes well to unfamiliar data.
This is precisely why Aiden T5 demonstrates exceptional performance across various tasks, even as it continues to undergo development.
Aiden T5 is an extraordinary language model, boasting remarkable specifications: 1.5 trillion parameters, 360 hidden layers, and 7250 neurons per layer. This places it among the largest and most intricate language models ever crafted.
To sum up, Aiden T5 is a versatile and powerful language model that excels in numerous tasks. While it remains a work in progress, its potential to transform our interaction with computers is undeniable. The number of parameters plays a critical role in the model's capacity to learn from data. With carefully calibrated parameters, Aiden T5 strikes a balance between learning and generalization. Consequently, it adeptly comprehends complex relationships from training data and applies that understanding to unfamiliar data.
Indeed, Aiden T5 consistently exhibits exceptional performance across diverse tasks, progressing even as its development continues. |