type: collective_task dataset_splits: ['train', 'dev'] tasks: - name: zero_shot_translation pipeline_labels: [pypeline@tensorflow] task_labels: [translate] inputs: - type: text format: json prompt: Free-form text, no formatting restrictions expected_input_types: ["text"] examples: {"en": "Hello world", "de": "Hallo Welt"} outputs: - type: text format: json prompt: Free-form text, no formatting restrictions expected_output_types: ["text"] examples: {"en": "I am a large language model.", "de": "Ich bin ein grosses Sprachmodell."} pipeline_params: {} - name: text_to_speech pipeline_labels: [pypeline@transformerxlsp] task_labels: [tts] inputs: - type: text format: json prompt: Markdown, HTML, Unicode, or LaTeX, but avoid complex math notation example: title="Hello World!"<\\title><::post.body=\\\nThis \\sout{is} an *italicized* text post.*```bash {...<}`````.rst metadata: {'tags': 'ROCK MUSIC'|None} expected_input_types: ["text"] examples: {EN: {""}, DE: {"#OpenSource #Synthesizer // Einige Werte kann ich noch nicht liefern da keine Implementierung vorliegt."}}}, {"...

 

 :JAZZ MUSIC{tag: 'jazz'}"/>}}`)} outputs: - type: audio format: wav, opus, m4a bitrate: 64kbps+ channel_count: 1 sample_rate: 22kHz+ rate: monophonic pitch_range: 0.5-4 octaves speed_range: +/- 5% vibrato_depth: maximum of 3 semitones dynamics_range: ppp-fff silence_padding: >=8ms prompt: Melodies, up to two verses per submission, please separate with commas. Monophony encouraged, unless improvisational techniques warrant chord progressions. Examples in EN, DE, ES, FR: {"en": "[0.7, 1, Eb4], 'Mary had a little lamb',[0.9, 1, Ab3,'Twinkle twinkle