osiria commited on
Commit
6715f04
1 Parent(s): 9e590e7

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +95 -0
README.md ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - it
5
+ widget:
6
+ - text: "mi chiamo marco rossi, vivo a roma e lavoro per l'agenzia spaziale italiana"
7
+ example_title: "Example 1"
8
+ ---
9
+
10
+ --------------------------------------------------------------------------------------------------
11
+
12
+ <body>
13
+ <span class="vertical-text" style="background-color:lightgreen;border-radius: 3px;padding: 3px;"> </span>
14
+ <br>
15
+ <span class="vertical-text" style="background-color:orange;border-radius: 3px;padding: 3px;">    Task: Named Entity Recognition</span>
16
+ <br>
17
+ <span class="vertical-text" style="background-color:lightblue;border-radius: 3px;padding: 3px;">    Model: DeBERTa</span>
18
+ <br>
19
+ <span class="vertical-text" style="background-color:tomato;border-radius: 3px;padding: 3px;">    Lang: IT</span>
20
+ <br>
21
+ <span class="vertical-text" style="background-color:lightgrey;border-radius: 3px;padding: 3px;">  Type: Uncased</span>
22
+ <br>
23
+ <span class="vertical-text" style="background-color:#CF9FFF;border-radius: 3px;padding: 3px;"> </span>
24
+ </body>
25
+
26
+ --------------------------------------------------------------------------------------------------
27
+
28
+ <h3>Model description</h3>
29
+
30
+ This is a <b>DeBERTa</b> <b>[1]</b> uncased model for the <b>Italian</b> language, fine-tuned for <b>Named Entity Recognition</b> (<b>Person</b>, <b>Location</b>, <b>Organization</b> and <b>Miscellanea</b> classes) on the [WikiNER](https://figshare.com/articles/dataset/Learning_multilingual_named_entity_recognition_from_Wikipedia/5462500) dataset <b>[2]</b>, using [mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) as a pre-trained model.
31
+
32
+
33
+ <h3>Training and Performances</h3>
34
+
35
+ The model is trained to perform entity recognition over 4 classes: <b>PER</b> (persons), <b>LOC</b> (locations), <b>ORG</b> (organizations), <b>MISC</b> (miscellanea, mainly events, products and services). It has been fine-tuned for Named Entity Recognition, using the WikiNER Italian dataset plus an additional custom dataset of manually annotated Wikipedia paragraphs.
36
+ The WikiNER dataset has been splitted in 102.352 training instances and 25.588 test instances, and the model has been trained for 1 epoch with a constant learning rate of 1e-5.
37
+
38
+ The model has been first fine-tuned on WikiNER, then focused on the Italian language and turned to uncased by modifying the embedding layer (as in [3], computing document-level frequencies over the Wikipedia dataset), and lastly fine-tuned on an additional fine-tuning on ~3.500 manually annotated lowercase paragraphs.
39
+
40
+ <h3>Quick usage</h3>
41
+
42
+ ```python
43
+ from transformers import AutoModelForTokenClassification, AutoTokenizer
44
+ import re
45
+ import string
46
+
47
+ tokenizer = AutoTokenizer.from_pretrained("osiria/deberta-base-italian-uncased-ner")
48
+ model = AutoModelForTokenClassification.from_pretrained("osiria/deberta-base-italian-uncased-ner", num_labels = 5)
49
+
50
+ text = "mi chiamo marco rossi, vivo a roma e lavoro per l'agenzia spaziale italiana nella missione prisma"
51
+
52
+ for p in string.punctuation:
53
+ text = text.replace(p, " " + p + " ")
54
+
55
+ ner(text)
56
+
57
+ [{'entity_group': 'PER',
58
+ 'score': 0.9929622,
59
+ 'word': 'marco rossi',
60
+ 'start': 9,
61
+ 'end': 21},
62
+ {'entity_group': 'LOC',
63
+ 'score': 0.989851,
64
+ 'word': 'roma',
65
+ 'start': 31,
66
+ 'end': 36},
67
+ {'entity_group': 'ORG',
68
+ 'score': 0.99059105,
69
+ 'word': 'agenzia spaziale italiana',
70
+ 'start': 53,
71
+ 'end': 79},
72
+ {'entity_group': 'MISC',
73
+ 'score': 0.9247404,
74
+ 'word': 'missione prisma',
75
+ 'start': 85,
76
+ 'end': 101}]
77
+ ```
78
+
79
+ <h3>References</h3>
80
+
81
+ [1] https://arxiv.org/abs/2111.09543
82
+
83
+ [2] https://www.sciencedirect.com/science/article/pii/S0004370212000276
84
+
85
+ [3] https://arxiv.org/abs/2010.05609
86
+
87
+ <h3>Limitations</h3>
88
+
89
+ This model is mainly trained on Wikipedia, so it's particularly suitable for natively digital text from the world wide web, written in a correct and fluent form (like wikis, web pages, news, etc.). However, it may show limitations when it comes to chaotic text, containing errors and slang expressions
90
+ (like social media posts) or when it comes to domain-specific text (like medical, financial or legal content).
91
+
92
+ <h3>License</h3>
93
+
94
+ The model is released under <b>MIT</b> license
95
+