--- license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: w2v-bert-2.0-sv results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: sv-SE split: test args: sv-SE metrics: - name: Wer type: wer value: 0.10046931592103249 --- # w2v-bert-2.0-sv This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1962 - Wer: 0.1005 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 2.075 | 0.7407 | 300 | 0.3441 | 0.3057 | | 0.2837 | 1.4815 | 600 | 0.2995 | 0.2274 | | 0.2081 | 2.2222 | 900 | 0.2443 | 0.1768 | | 0.1579 | 2.9630 | 1200 | 0.2143 | 0.1493 | | 0.1248 | 3.7037 | 1500 | 0.2165 | 0.1504 | | 0.0934 | 4.4444 | 1800 | 0.1869 | 0.1284 | | 0.0719 | 5.1852 | 2100 | 0.2072 | 0.1216 | | 0.0573 | 5.9259 | 2400 | 0.1949 | 0.1195 | | 0.0436 | 6.6667 | 2700 | 0.2025 | 0.1142 | | 0.0317 | 7.4074 | 3000 | 0.2003 | 0.1097 | | 0.0256 | 8.1481 | 3300 | 0.1942 | 0.1060 | | 0.0169 | 8.8889 | 3600 | 0.1851 | 0.1030 | | 0.0121 | 9.6296 | 3900 | 0.1962 | 0.1005 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.1.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1