File size: 2,796 Bytes
7e270f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
language:
- src
- tgt
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: output_r1_iter_wo_p
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# output_r1_iter_wo_p

This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1334
- Bleu: 0.0
- Gen Len: 2.432

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:----:|:-------:|
| No log        | 1.0   | 27   | 0.2728          | 0.0  | 2.9953  |
| No log        | 2.0   | 54   | 0.2650          | 0.0  | 2.6791  |
| No log        | 3.0   | 81   | 0.2637          | 0.0  | 2.1874  |
| No log        | 4.0   | 108  | 0.2418          | 0.0  | 2.2973  |
| No log        | 5.0   | 135  | 0.2738          | 0.0  | 2.2494  |
| No log        | 6.0   | 162  | 0.1914          | 0.0  | 2.3812  |
| No log        | 7.0   | 189  | 0.1641          | 0.0  | 2.3983  |
| No log        | 8.0   | 216  | 0.1695          | 0.0  | 2.3995  |
| No log        | 9.0   | 243  | 0.1521          | 0.0  | 2.4167  |
| No log        | 10.0  | 270  | 0.1569          | 0.0  | 2.4167  |
| No log        | 11.0  | 297  | 0.1615          | 0.0  | 2.4137  |
| No log        | 12.0  | 324  | 0.1473          | 0.0  | 2.4238  |
| No log        | 13.0  | 351  | 0.1376          | 0.0  | 2.4255  |
| No log        | 14.0  | 378  | 0.1495          | 0.0  | 2.419   |
| No log        | 15.0  | 405  | 0.1334          | 0.0  | 2.432   |
| No log        | 16.0  | 432  | 0.1474          | 0.0  | 2.4214  |
| No log        | 17.0  | 459  | 0.1484          | 0.0  | 2.4291  |
| No log        | 18.0  | 486  | 0.1407          | 0.0  | 2.4297  |
| 0.1905        | 19.0  | 513  | 0.1568          | 0.0  | 2.4208  |
| 0.1905        | 20.0  | 540  | 0.1631          | 0.0  | 2.4261  |


### Framework versions

- Transformers 4.30.2
- Pytorch 1.13.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3