--- license: other language: - en tags: - biology - medical - cancer datasets: - owkin/nct-crc-he - owkin/camelyon16-features pipeline_tag: feature-extraction --- # Model Card for Phikon --- > [!IMPORTANT] > 🎉 Check out the latest version of Phikon here: [Phikon-v2](https://huggingface.co/owkin/phikon-v2) > > Phikon is a self-supervised learning model for histopathology trained with iBOT. To learn more about how to use the model, we encourage you to read our blog post and view this Colab notebook. ### Model Description - **Developed by:** Owkin - **Funded by:** Owkin and IDRIS - **Model type:** Vision Transformer Base - **Model Stats:** - Params (M): 85.8 - Image size: 224 x 224 x 3 - **Paper:** - Scaling Self-Supervised Learning for Histopathology with Masked Image Modeling. A. Filiot et al., medRxiv 2023.07.21.23292757; doi: [https://doi.org/10.1101/2023.07.21.23292757](https://www.medrxiv.org/content/10.1101/2023.07.21.23292757v2) - **Pretrain Dataset:** 40 million pan-cancer tiles extracted from [TGCA](https://portal.gdc.cancer.gov/) - **Original:** https://github.com/owkin/HistoSSLscaling/ - **License:** [Owkin non-commercial license](https://github.com/owkin/HistoSSLscaling/blob/main/LICENSE.txt) ## Uses ### Direct Use The primary use of the Phikon model can be used for feature extraction from histology image tiles. ### Downstream Use The model can be used for cancer classification on a variety of cancer subtypes. The model can also be finetuned to specialise on cancer subtypes. ## Technical Specifications ### Compute Infrastructure All the models we built were trained on the French Jean Zay cluster. ### Hardware NVIDIA V100 GPUs with 32Gb RAM ### Software PyTorch 1.13.1 --- ### BibTeX entry and citation info ```bibtex @article{Filiot2023ScalingSSLforHistoWithMIM, author = {Alexandre Filiot and Ridouane Ghermi and Antoine Olivier and Paul Jacob and Lucas Fidon and Alice Mac Kain and Charlie Saillard and Jean-Baptiste Schiratti}, title = {Scaling Self-Supervised Learning for Histopathology with Masked Image Modeling}, elocation-id = {2023.07.21.23292757}, year = {2023}, doi = {10.1101/2023.07.21.23292757}, publisher = {Cold Spring Harbor Laboratory Press}, url = {https://www.medrxiv.org/content/early/2023/07/26/2023.07.21.23292757}, eprint = {https://www.medrxiv.org/content/early/2023/07/26/2023.07.21.23292757.full.pdf}, journal = {medRxiv} } ```