|
from dataclasses import dataclass |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
|
|
from transformers import SiglipVisionModel, SiglipPreTrainedModel, SiglipVisionConfig |
|
from transformers.utils import ModelOutput |
|
|
|
from loss_fn import AsymmetricLossOptimized |
|
|
|
|
|
@dataclass |
|
class SiglipForImageClassifierOutput(ModelOutput): |
|
loss: torch.FloatTensor | None = None |
|
logits: torch.FloatTensor | None = None |
|
pooler_output: torch.FloatTensor | None = None |
|
hidden_states: tuple[torch.FloatTensor, ...] | None = None |
|
attentions: tuple[torch.FloatTensor, ...] | None = None |
|
|
|
|
|
class SiglipForImageClassification(SiglipPreTrainedModel): |
|
config_class = SiglipVisionConfig |
|
main_input_name = "pixel_values" |
|
|
|
def __init__( |
|
self, |
|
config, |
|
): |
|
super().__init__(config) |
|
|
|
self.num_labels = config.num_labels |
|
self.siglip = SiglipVisionModel(config) |
|
|
|
|
|
self.classifier = ( |
|
nn.Linear(config.hidden_size, config.num_labels) |
|
if config.num_labels > 0 |
|
else nn.Identity() |
|
) |
|
|
|
|
|
self.post_init() |
|
|
|
def forward( |
|
self, pixel_values: torch.FloatTensor, labels: torch.LongTensor | None = None |
|
): |
|
outputs = self.siglip(pixel_values) |
|
pooler_output = outputs.pooler_output |
|
logits = self.classifier(pooler_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and ( |
|
labels.dtype == torch.long or labels.dtype == torch.int |
|
): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = AsymmetricLossOptimized() |
|
loss = loss_fct(logits, labels) |
|
|
|
return SiglipForImageClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
pooler_output=outputs.pooler_output, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|