Upload 2 files
Browse files- image_processing_tagger.py +404 -0
- preprocessor_config.json +1 -1
image_processing_tagger.py
ADDED
@@ -0,0 +1,404 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# copied from ViTImageProcessor (https://github.com/huggingface/transformers/blob/v4.37.2/src/transformers/models/vit/image_processing_vit.py)
|
2 |
+
|
3 |
+
"""Image processor class for WD v14 Tagger."""
|
4 |
+
|
5 |
+
from typing import Optional, List, Dict, Union, Tuple
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import cv2
|
9 |
+
from PIL import Image
|
10 |
+
|
11 |
+
from transformers.image_processing_utils import (
|
12 |
+
BaseImageProcessor,
|
13 |
+
BatchFeature,
|
14 |
+
get_size_dict,
|
15 |
+
)
|
16 |
+
from transformers.image_transforms import (
|
17 |
+
rescale,
|
18 |
+
to_channel_dimension_format,
|
19 |
+
_rescale_for_pil_conversion,
|
20 |
+
to_pil_image,
|
21 |
+
)
|
22 |
+
from transformers.image_utils import (
|
23 |
+
IMAGENET_STANDARD_MEAN,
|
24 |
+
IMAGENET_STANDARD_STD,
|
25 |
+
ChannelDimension,
|
26 |
+
ImageInput,
|
27 |
+
PILImageResampling,
|
28 |
+
infer_channel_dimension_format,
|
29 |
+
is_scaled_image,
|
30 |
+
make_list_of_images,
|
31 |
+
to_numpy_array,
|
32 |
+
valid_images,
|
33 |
+
)
|
34 |
+
from transformers.utils import TensorType, logging
|
35 |
+
|
36 |
+
logger = logging.get_logger(__name__)
|
37 |
+
|
38 |
+
|
39 |
+
# copied from transformers.image_transforms.resize
|
40 |
+
def resize_with_padding(
|
41 |
+
image: np.ndarray,
|
42 |
+
size: Tuple[int, int],
|
43 |
+
color: Tuple[int, int, int],
|
44 |
+
resample: PILImageResampling = None,
|
45 |
+
reducing_gap: Optional[int] = None,
|
46 |
+
data_format: Optional[ChannelDimension] = None,
|
47 |
+
return_numpy: bool = True,
|
48 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
49 |
+
):
|
50 |
+
"""
|
51 |
+
Resizes `image` to `(height, width)` specified by `size` using the PIL library.
|
52 |
+
|
53 |
+
Args:
|
54 |
+
image (`np.ndarray`):
|
55 |
+
The image to resize.
|
56 |
+
size (`Tuple[int, int]`):
|
57 |
+
The size to use for resizing the image.
|
58 |
+
color (`Tuple[int, int, int]`):
|
59 |
+
The color to use for padding the image.
|
60 |
+
resample (`int`, *optional*, defaults to `PILImageResampling.BILINEAR`):
|
61 |
+
The filter to user for resampling.
|
62 |
+
reducing_gap (`int`, *optional*):
|
63 |
+
Apply optimization by resizing the image in two steps. The bigger `reducing_gap`, the closer the result to
|
64 |
+
the fair resampling. See corresponding Pillow documentation for more details.
|
65 |
+
data_format (`ChannelDimension`, *optional*):
|
66 |
+
The channel dimension format of the output image. If unset, will use the inferred format from the input.
|
67 |
+
return_numpy (`bool`, *optional*, defaults to `True`):
|
68 |
+
Whether or not to return the resized image as a numpy array. If False a `PIL.Image.Image` object is
|
69 |
+
returned.
|
70 |
+
input_data_format (`ChannelDimension`, *optional*):
|
71 |
+
The channel dimension format of the input image. If unset, will use the inferred format from the input.
|
72 |
+
|
73 |
+
Returns:
|
74 |
+
`np.ndarray`: The resized image.
|
75 |
+
"""
|
76 |
+
|
77 |
+
resample = resample if resample is not None else PILImageResampling.BILINEAR
|
78 |
+
|
79 |
+
if not len(size) == 2:
|
80 |
+
raise ValueError("size must have 2 elements")
|
81 |
+
|
82 |
+
# For all transformations, we want to keep the same data format as the input image unless otherwise specified.
|
83 |
+
# The resized image from PIL will always have channels last, so find the input format first.
|
84 |
+
if input_data_format is None:
|
85 |
+
input_data_format = infer_channel_dimension_format(image)
|
86 |
+
data_format = input_data_format if data_format is None else data_format
|
87 |
+
|
88 |
+
# To maintain backwards compatibility with the resizing done in previous image feature extractors, we use
|
89 |
+
# the pillow library to resize the image and then convert back to numpy
|
90 |
+
do_rescale = False
|
91 |
+
if not isinstance(image, Image.Image):
|
92 |
+
do_rescale = _rescale_for_pil_conversion(image)
|
93 |
+
image = to_pil_image(
|
94 |
+
image, do_rescale=do_rescale, input_data_format=input_data_format
|
95 |
+
)
|
96 |
+
# PIL images are in the format (width, height)
|
97 |
+
|
98 |
+
assert isinstance(image, Image.Image)
|
99 |
+
|
100 |
+
height, width = size
|
101 |
+
original_width, original_height = image.size
|
102 |
+
|
103 |
+
# ratio
|
104 |
+
ratio = min(width / original_width, height / original_height)
|
105 |
+
|
106 |
+
# rescale and keep aspect ratio
|
107 |
+
new_width = int(original_width * ratio)
|
108 |
+
new_height = int(original_height * ratio)
|
109 |
+
|
110 |
+
resized_image = image.resize(
|
111 |
+
(new_width, new_height), resample=resample, reducing_gap=reducing_gap
|
112 |
+
)
|
113 |
+
|
114 |
+
# solid background
|
115 |
+
new_image = Image.new("RGBA", size, (color) + (255,))
|
116 |
+
|
117 |
+
# paste resized image at the center
|
118 |
+
offset = ((width - new_width) // 2, (height - new_height) // 2)
|
119 |
+
new_image.paste(
|
120 |
+
resized_image.convert("RGBA"), offset, resized_image.convert("RGBA")
|
121 |
+
)
|
122 |
+
|
123 |
+
new_image = new_image.convert("RGB")
|
124 |
+
|
125 |
+
if return_numpy:
|
126 |
+
new_image = np.array(new_image)
|
127 |
+
# If the input image channel dimension was of size 1, then it is dropped when converting to a PIL image
|
128 |
+
# so we need to add it back if necessary.
|
129 |
+
new_image = (
|
130 |
+
np.expand_dims(new_image, axis=-1) if new_image.ndim == 2 else new_image
|
131 |
+
)
|
132 |
+
# The image is always in channels last format after converting from a PIL image
|
133 |
+
new_image = to_channel_dimension_format(
|
134 |
+
new_image, data_format, input_channel_dim=ChannelDimension.LAST
|
135 |
+
)
|
136 |
+
# If an image was rescaled to be in the range [0, 255] before converting to a PIL image, then we need to
|
137 |
+
# rescale it back to the original range.
|
138 |
+
new_image = rescale(new_image, 1 / 255) if do_rescale else new_image
|
139 |
+
|
140 |
+
return new_image
|
141 |
+
|
142 |
+
|
143 |
+
class WDv14TaggerImageProcessor(BaseImageProcessor):
|
144 |
+
r"""
|
145 |
+
Constructs a WD v14 Tagger image processor.
|
146 |
+
|
147 |
+
Args:
|
148 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
149 |
+
Whether to resize the image's (height, width) dimensions to the specified `(size["height"],
|
150 |
+
size["width"])`. Can be overridden by the `do_resize` parameter in the `preprocess` method.
|
151 |
+
size (`dict`, *optional*, defaults to `{"height": 448, "width": 448}`):
|
152 |
+
Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess`
|
153 |
+
method.
|
154 |
+
color (`List[int]`):
|
155 |
+
Color to use for padding the image after resizing. Can be overridden by the `size` parameter in the `preprocess`
|
156 |
+
method.
|
157 |
+
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
|
158 |
+
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
|
159 |
+
`preprocess` method.
|
160 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
161 |
+
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
|
162 |
+
parameter in the `preprocess` method.
|
163 |
+
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
164 |
+
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
|
165 |
+
`preprocess` method.
|
166 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
167 |
+
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
|
168 |
+
method.
|
169 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
|
170 |
+
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
|
171 |
+
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
|
172 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
|
173 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
|
174 |
+
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
175 |
+
"""
|
176 |
+
|
177 |
+
model_input_names = ["pixel_values"]
|
178 |
+
|
179 |
+
def __init__(
|
180 |
+
self,
|
181 |
+
do_resize: bool = True,
|
182 |
+
size: Optional[Dict[str, int]] = None,
|
183 |
+
color: Optional[List[int]] = None,
|
184 |
+
resample: PILImageResampling = PILImageResampling.BILINEAR,
|
185 |
+
do_rescale: bool = True,
|
186 |
+
rescale_factor: Union[int, float] = 1 / 255,
|
187 |
+
do_normalize: bool = True,
|
188 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
189 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
190 |
+
**kwargs,
|
191 |
+
) -> None:
|
192 |
+
super().__init__(**kwargs)
|
193 |
+
size = size if size is not None else {"height": 448, "width": 448}
|
194 |
+
size = get_size_dict(size)
|
195 |
+
color = color if color is not None else [255, 255, 255]
|
196 |
+
self.do_resize = do_resize
|
197 |
+
self.do_rescale = do_rescale
|
198 |
+
self.do_normalize = do_normalize
|
199 |
+
self.size = size
|
200 |
+
self.color = color
|
201 |
+
self.resample = resample
|
202 |
+
self.rescale_factor = rescale_factor
|
203 |
+
self.image_mean = (
|
204 |
+
image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
|
205 |
+
)
|
206 |
+
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
|
207 |
+
|
208 |
+
def resize(
|
209 |
+
self,
|
210 |
+
image: np.ndarray,
|
211 |
+
size: Dict[str, int],
|
212 |
+
color: List[int] = [255, 255, 255],
|
213 |
+
resample: PILImageResampling = PILImageResampling.BILINEAR,
|
214 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
215 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
216 |
+
**kwargs,
|
217 |
+
) -> np.ndarray:
|
218 |
+
"""
|
219 |
+
Resize an image to `(size["height"], size["width"])`.
|
220 |
+
|
221 |
+
Args:
|
222 |
+
image (`np.ndarray`):
|
223 |
+
Image to resize.
|
224 |
+
size (`Dict[str, int]`):
|
225 |
+
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
|
226 |
+
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
|
227 |
+
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
|
228 |
+
data_format (`ChannelDimension` or `str`, *optional*):
|
229 |
+
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
230 |
+
image is used. Can be one of:
|
231 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
232 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
233 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
234 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
235 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
236 |
+
from the input image. Can be one of:
|
237 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
238 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
239 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
240 |
+
|
241 |
+
Returns:
|
242 |
+
`np.ndarray`: The resized image.
|
243 |
+
"""
|
244 |
+
size = get_size_dict(size)
|
245 |
+
if "height" not in size or "width" not in size:
|
246 |
+
raise ValueError(
|
247 |
+
f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}"
|
248 |
+
)
|
249 |
+
|
250 |
+
output_size = (size["height"], size["width"])
|
251 |
+
|
252 |
+
color = tuple(color)
|
253 |
+
|
254 |
+
return resize_with_padding(
|
255 |
+
image,
|
256 |
+
size=output_size,
|
257 |
+
color=color,
|
258 |
+
resample=resample,
|
259 |
+
data_format=data_format,
|
260 |
+
input_data_format=input_data_format,
|
261 |
+
**kwargs,
|
262 |
+
)
|
263 |
+
|
264 |
+
def preprocess(
|
265 |
+
self,
|
266 |
+
images: ImageInput,
|
267 |
+
do_resize: Optional[bool] = None,
|
268 |
+
size: Optional[Dict[str, int]] = None,
|
269 |
+
color: Optional[List[int]] = None,
|
270 |
+
resample: PILImageResampling = None,
|
271 |
+
do_rescale: Optional[bool] = None,
|
272 |
+
rescale_factor: Optional[float] = None,
|
273 |
+
do_normalize: Optional[bool] = None,
|
274 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
275 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
276 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
277 |
+
data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
|
278 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
279 |
+
**kwargs,
|
280 |
+
):
|
281 |
+
"""
|
282 |
+
Preprocess an image or batch of images.
|
283 |
+
|
284 |
+
Args:
|
285 |
+
images (`ImageInput`):
|
286 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
287 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
288 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
289 |
+
Whether to resize the image.
|
290 |
+
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
291 |
+
Dictionary in the format `{"height": h, "width": w}` specifying the size of the output image after
|
292 |
+
resizing.
|
293 |
+
resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`):
|
294 |
+
`PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has
|
295 |
+
an effect if `do_resize` is set to `True`.
|
296 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
297 |
+
Whether to rescale the image values between [0 - 1].
|
298 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
299 |
+
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
300 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
301 |
+
Whether to normalize the image.
|
302 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
303 |
+
The type of tensors to return. Can be one of:
|
304 |
+
- Unset: Return a list of `np.ndarray`.
|
305 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
306 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
307 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
308 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
309 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
310 |
+
The channel dimension format for the output image. Can be one of:
|
311 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
312 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
313 |
+
- Unset: Use the channel dimension format of the input image.
|
314 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
315 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
316 |
+
from the input image. Can be one of:
|
317 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
318 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
319 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
320 |
+
"""
|
321 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
322 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
323 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
324 |
+
resample = resample if resample is not None else self.resample
|
325 |
+
rescale_factor = (
|
326 |
+
rescale_factor if rescale_factor is not None else self.rescale_factor
|
327 |
+
)
|
328 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
329 |
+
image_std = image_std if image_std is not None else self.image_std
|
330 |
+
|
331 |
+
size = size if size is not None else self.size
|
332 |
+
size_dict = get_size_dict(size)
|
333 |
+
|
334 |
+
color = color if color is not None else self.color
|
335 |
+
|
336 |
+
images = make_list_of_images(images)
|
337 |
+
|
338 |
+
if not valid_images(images):
|
339 |
+
raise ValueError(
|
340 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
341 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
342 |
+
)
|
343 |
+
|
344 |
+
if do_resize and size is None:
|
345 |
+
raise ValueError("Size must be specified if do_resize is True.")
|
346 |
+
|
347 |
+
if do_rescale and rescale_factor is None:
|
348 |
+
raise ValueError("Rescale factor must be specified if do_rescale is True.")
|
349 |
+
|
350 |
+
# All transformations expect numpy arrays.
|
351 |
+
images = [to_numpy_array(image) for image in images]
|
352 |
+
|
353 |
+
if is_scaled_image(images[0]) and do_rescale:
|
354 |
+
logger.warning_once(
|
355 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
356 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
357 |
+
)
|
358 |
+
|
359 |
+
if input_data_format is None:
|
360 |
+
# We assume that all images have the same channel dimension format.
|
361 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
362 |
+
|
363 |
+
if do_resize:
|
364 |
+
images = [
|
365 |
+
self.resize(
|
366 |
+
image=image,
|
367 |
+
size=size_dict,
|
368 |
+
color=color,
|
369 |
+
resample=resample,
|
370 |
+
input_data_format=input_data_format,
|
371 |
+
)
|
372 |
+
for image in images
|
373 |
+
]
|
374 |
+
|
375 |
+
if do_rescale:
|
376 |
+
images = [
|
377 |
+
self.rescale(
|
378 |
+
image=image,
|
379 |
+
scale=rescale_factor,
|
380 |
+
input_data_format=input_data_format,
|
381 |
+
)
|
382 |
+
for image in images
|
383 |
+
]
|
384 |
+
|
385 |
+
if do_normalize:
|
386 |
+
images = [
|
387 |
+
self.normalize(
|
388 |
+
image=image,
|
389 |
+
mean=image_mean,
|
390 |
+
std=image_std,
|
391 |
+
input_data_format=input_data_format,
|
392 |
+
)
|
393 |
+
for image in images
|
394 |
+
]
|
395 |
+
|
396 |
+
images = [
|
397 |
+
to_channel_dimension_format(
|
398 |
+
image, data_format, input_channel_dim=input_data_format
|
399 |
+
)
|
400 |
+
for image in images
|
401 |
+
]
|
402 |
+
|
403 |
+
data = {"pixel_values": images}
|
404 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
preprocessor_config.json
CHANGED
@@ -19,7 +19,7 @@
|
|
19 |
0.5
|
20 |
],
|
21 |
"resample": 2,
|
22 |
-
"rescale_factor": 0.
|
23 |
"size": {
|
24 |
"height": 448,
|
25 |
"width": 448
|
|
|
19 |
0.5
|
20 |
],
|
21 |
"resample": 2,
|
22 |
+
"rescale_factor": 0.0,
|
23 |
"size": {
|
24 |
"height": 448,
|
25 |
"width": 448
|