pabRomero commited on
Commit
ed91fe7
1 Parent(s): a5e209f

Training complete

Browse files
Files changed (1) hide show
  1. README.md +11 -9
README.md CHANGED
@@ -21,11 +21,11 @@ should probably proofread and complete it, then remove this comment. -->
21
 
22
  This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset.
23
  It achieves the following results on the evaluation set:
24
- - Loss: 0.0849
25
- - Precision: 0.7712
26
- - Recall: 0.7700
27
- - F1: 0.7706
28
- - Accuracy: 0.9738
29
 
30
  ## Model description
31
 
@@ -51,20 +51,22 @@ The following hyperparameters were used during training:
51
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
  - lr_scheduler_type: linear
53
  - lr_scheduler_warmup_ratio: 0.1
54
- - num_epochs: 2
55
  - mixed_precision_training: Native AMP
56
 
57
  ### Training results
58
 
59
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
60
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
61
- | No log | 1.0 | 231 | 0.0991 | 0.7455 | 0.7544 | 0.7499 | 0.9701 |
62
- | No log | 2.0 | 462 | 0.0849 | 0.7712 | 0.7700 | 0.7706 | 0.9738 |
 
 
63
 
64
 
65
  ### Framework versions
66
 
67
  - Transformers 4.44.2
68
- - Pytorch 2.4.0+cu121
69
  - Datasets 2.21.0
70
  - Tokenizers 0.19.1
 
21
 
22
  This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset.
23
  It achieves the following results on the evaluation set:
24
+ - Loss: 0.0834
25
+ - Precision: 0.7938
26
+ - Recall: 0.7935
27
+ - F1: 0.7936
28
+ - Accuracy: 0.9750
29
 
30
  ## Model description
31
 
 
51
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
  - lr_scheduler_type: linear
53
  - lr_scheduler_warmup_ratio: 0.1
54
+ - num_epochs: 4
55
  - mixed_precision_training: Native AMP
56
 
57
  ### Training results
58
 
59
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
60
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
61
+ | No log | 1.0 | 231 | 0.0943 | 0.7464 | 0.7612 | 0.7537 | 0.9720 |
62
+ | No log | 2.0 | 462 | 0.0801 | 0.7861 | 0.7821 | 0.7841 | 0.9750 |
63
+ | 0.2571 | 3.0 | 693 | 0.0806 | 0.7900 | 0.7911 | 0.7906 | 0.9748 |
64
+ | 0.2571 | 4.0 | 924 | 0.0834 | 0.7938 | 0.7935 | 0.7936 | 0.9750 |
65
 
66
 
67
  ### Framework versions
68
 
69
  - Transformers 4.44.2
70
+ - Pytorch 2.4.1+cu121
71
  - Datasets 2.21.0
72
  - Tokenizers 0.19.1