--- library_name: transformers license: mit base_model: emilyalsentzer/Bio_ClinicalBERT tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: BioClinicalBERT-full-finetuned-ner-pablo results: [] --- # BioClinicalBERT-full-finetuned-ner-pablo This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the n2c2 2018 dataset for the paper https://arxiv.org/abs/2409.19467. It achieves the following results on the evaluation set: - Loss: 0.0834 - Precision: 0.7938 - Recall: 0.7935 - F1: 0.7936 - Accuracy: 0.9750 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 231 | 0.0943 | 0.7464 | 0.7612 | 0.7537 | 0.9720 | | No log | 2.0 | 462 | 0.0801 | 0.7861 | 0.7821 | 0.7841 | 0.9750 | | 0.2571 | 3.0 | 693 | 0.0806 | 0.7900 | 0.7911 | 0.7906 | 0.9748 | | 0.2571 | 4.0 | 924 | 0.0834 | 0.7938 | 0.7935 | 0.7936 | 0.9750 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1