--- library_name: transformers license: mit base_model: emilyalsentzer/Bio_ClinicalBERT tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: BioMedRoBERTa-finetuned-ner-pablo-just-classifier results: [] --- # BioMedRoBERTa-finetuned-ner-pablo-just-classifier This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1228 - Precision: 0.6701 - Recall: 0.6809 - F1: 0.6754 - Accuracy: 0.9657 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.01 - train_batch_size: 512 - eval_batch_size: 512 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 2048 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.9697 | 16 | 0.2938 | 0.4425 | 0.5130 | 0.4751 | 0.9361 | | No log | 2.0 | 33 | 0.1815 | 0.5546 | 0.5873 | 0.5705 | 0.9535 | | No log | 2.9697 | 49 | 0.1617 | 0.5838 | 0.6189 | 0.6008 | 0.9575 | | No log | 4.0 | 66 | 0.1482 | 0.6070 | 0.6396 | 0.6229 | 0.9602 | | No log | 4.9697 | 82 | 0.1340 | 0.6465 | 0.6563 | 0.6513 | 0.9633 | | No log | 6.0 | 99 | 0.1306 | 0.6561 | 0.6638 | 0.6599 | 0.9641 | | No log | 6.9697 | 115 | 0.1290 | 0.6569 | 0.6705 | 0.6636 | 0.9645 | | No log | 8.0 | 132 | 0.1246 | 0.6664 | 0.6794 | 0.6728 | 0.9654 | | No log | 8.9697 | 148 | 0.1230 | 0.6699 | 0.6793 | 0.6745 | 0.9656 | | No log | 9.6970 | 160 | 0.1228 | 0.6701 | 0.6809 | 0.6754 | 0.9657 | ### Framework versions - Transformers 4.44.1 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1