File size: 4,518 Bytes
da0e574 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
---
language:
- gl
- es
- en
- cat
- pt
licence:
- MIT
tags:
- galician
- Llama
- llama-cpp
- gguf-my-repo
license: llama3.1
inference:
parameters:
top_k: 10
do_sample: true
temperature: 0.4
widget:
- text: 'Traduce ao galego esta frase en inglés:
Inglés: "my sister is studying Biology at the university."
Galego: "a miña irmá está a estudar bioloxía na universidade."
----
Traduce ao galego esta frase en inglés:
Inglés: "You are working with my mother on a very interesting project."
Galego: "Estás a traballar coa miña nai nun proxecto moi interesante"
----
Traduce ao galego esta frase en inglés:
Inglés: "You have to fix the computer now"
Galego:'
example_title: Translation
- text: 'Responde á seguinte pregunta.
Pregunta: "Cal é a capital de Noruega?"
Resposta: "A capital de Noruega é Oslo."
----
Responde á seguinte pregunta.
Pregunta: "Cal é a moeda de Portugal"
Resposta: "A moeda de Portugal é o euro."
----
Responde á seguinte pregunta.
Pregunta: "Cal é a capital de Suecia?"
Resposta:'
example_title: Question&Answering
- text: 'Cualifica como Positivo ou Negativo o sentimento da seguinte frase:
Texto: "Estou moi feliz"
Polaridade: Positivo
----
Cualifica como Positivo ou Negativo o sentimento da seguinte frase:
Texto: "Non me gusta beber cervexa"
Polaridade: Negativo
----
Cualifica como Positivo ou Negativo o sentimento da seguinte frase:
Texto: "O meu pai detesta o seu traballo"
Polaridade: Negativo
----
Cualifica como Positivo ou Negativo o sentimento da seguinte frase:
Texto: "Uxía desfruta xogando ao fútbol"
Polaridade: Positivo
----
Cualifica como Positivo ou Negativo o sentimento da seguinte frase:
Texto: "O neno non está contento coas notas"
Polaridade:'
example_title: Sentiment Analysis
- text: 'Extrae as entidades nomeadas do seguinte texto:
Texto: "Chámome Wolfgang e vivo en Berlin"
Entidades: Wolfgang:PER, Berlin:LOC
----
Extrae as entidades nomeadas do seguinte texto:
Texto: "María e Miguel non teñen ningún problema"
Entidades: María:PER, Miguel:PER
----
Extrae as entidades nomeadas do seguinte texto:
Texto: "O mellor de Barcelona é o bar do meu amigo Pablo"
Entidades: Pablo:PER, Barcelona:LOC
----
Extrae as entidades nomeadas do seguinte texto:
Texto: "Carlos comparte cuarto con Marc"
Entidades:'
example_title: Name Entity Recognition (NER)
- text: A receita tradicional das filloas é
example_title: Filloas
- text: O neno vivía preto de
example_title: O neno
base_model: proxectonos/Llama-3.1-Carballo
pipeline_tag: text-generation
library_name: transformers
---
# pablo-rf/Llama-3.1-Carballo-Q4_K_M-GGUF
This model was converted to GGUF format from [`proxectonos/Llama-3.1-Carballo`](https://huggingface.co/proxectonos/Llama-3.1-Carballo) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/proxectonos/Llama-3.1-Carballo) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo pablo-rf/Llama-3.1-Carballo-Q4_K_M-GGUF --hf-file llama-3.1-carballo-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo pablo-rf/Llama-3.1-Carballo-Q4_K_M-GGUF --hf-file llama-3.1-carballo-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo pablo-rf/Llama-3.1-Carballo-Q4_K_M-GGUF --hf-file llama-3.1-carballo-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo pablo-rf/Llama-3.1-Carballo-Q4_K_M-GGUF --hf-file llama-3.1-carballo-q4_k_m.gguf -c 2048
```
|