pabloruizponce commited on
Commit
f908e9d
1 Parent(s): 33378ff

Upload model

Browse files
Files changed (5) hide show
  1. README.md +199 -0
  2. config.json +31 -0
  3. config.py +48 -0
  4. model.py +72 -0
  5. pytorch_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "ACTIVATION": "gelu",
3
+ "BETA_SCHEDULER": "cosine",
4
+ "CFG_WEIGHT": 3,
5
+ "CFG_WEIGHT_INDIVIDUAL": 1,
6
+ "CFG_WEIGHT_INTERACTION": 3,
7
+ "CONTROL": "text",
8
+ "DIFFUSION_STEPS": 1000,
9
+ "DROPOUT": 0.1,
10
+ "FF_SIZE": 2048,
11
+ "FINETUNE": false,
12
+ "INPUT_DIM": 262,
13
+ "LATENT_DIM": 1024,
14
+ "MODE": "interaction",
15
+ "MOTION_REP": "global",
16
+ "NUM_HEADS": 8,
17
+ "NUM_LAYERS": 8,
18
+ "SAMPLER": "uniform",
19
+ "STRATEGY": "ddim50",
20
+ "TEXT_ENCODER": "clip",
21
+ "T_BAR": 700,
22
+ "architectures": [
23
+ "in2INModel"
24
+ ],
25
+ "auto_map": {
26
+ "AutoConfig": "config.in2INConfig",
27
+ "AutoModel": "model.in2INModel"
28
+ },
29
+ "torch_dtype": "float32",
30
+ "transformers_version": "4.41.2"
31
+ }
config.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+ class in2INConfig(PretrainedConfig):
4
+ def __init__(self,
5
+ num_layers=8,
6
+ num_heads=8,
7
+ dropout=0.1,
8
+ input_dim=262,
9
+ latent_dim=1024,
10
+ ff_size=2048,
11
+ activation="gelu",
12
+ diffusion_steps=1000,
13
+ beta_scheduler="cosine",
14
+ sampler="uniform",
15
+ motion_rep="global",
16
+ finetune=False,
17
+ text_encoder="clip",
18
+ t_bar=700,
19
+ control="text",
20
+ strategy="ddim50",
21
+ cfg_weight=3,
22
+ cfg_weight_interaction=3,
23
+ cfg_weight_individual=1,
24
+ mode="interaction",
25
+ **kwargs):
26
+
27
+ self.NUM_LAYERS = num_layers
28
+ self.NUM_HEADS = num_heads
29
+ self.DROPOUT = dropout
30
+ self.INPUT_DIM = input_dim
31
+ self.LATENT_DIM = latent_dim
32
+ self.FF_SIZE = ff_size
33
+ self.ACTIVATION = activation
34
+ self.DIFFUSION_STEPS = diffusion_steps
35
+ self.BETA_SCHEDULER = beta_scheduler
36
+ self.SAMPLER = sampler
37
+ self.MOTION_REP = motion_rep
38
+ self.FINETUNE = finetune
39
+ self.TEXT_ENCODER = text_encoder
40
+ self.T_BAR = t_bar
41
+ self.CONTROL = control
42
+ self.STRATEGY = strategy
43
+ self.CFG_WEIGHT = cfg_weight
44
+ self.CFG_WEIGHT_INTERACTION = cfg_weight_interaction
45
+ self.CFG_WEIGHT_INDIVIDUAL = cfg_weight_individual
46
+ self.MODE = mode
47
+
48
+ super().__init__(**kwargs)
model.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import copy
3
+ import numpy as np
4
+
5
+ from typing import OrderedDict
6
+ from scipy.ndimage import gaussian_filter1d
7
+
8
+ from transformers import PreTrainedModel
9
+ from in2in.utils.configs import get_config
10
+ from in2in.models.in2in import in2IN
11
+
12
+ from .config import in2INConfig
13
+
14
+ class in2INModel(PreTrainedModel):
15
+ config_class = in2INConfig
16
+
17
+ def __init__(self, config):
18
+ super().__init__(config)
19
+ self.model = in2IN(config, mode=config.MODE)
20
+
21
+ def forward(self, prompt_interaction, prompt_individual1, prompt_individual2):
22
+ self.model.eval()
23
+ batch = OrderedDict({})
24
+
25
+ batch["motion_lens"] = torch.zeros(1,1).long().cuda()
26
+ batch["prompt_interaction"] = prompt_interaction
27
+
28
+ if self.mode != "individual":
29
+ batch["prompt_individual1"] = prompt_individual1
30
+ batch["prompt_individual2"] = prompt_individual2
31
+
32
+ window_size = 210
33
+ motion_output = self.generate_loop(batch, window_size)
34
+ return motion_output
35
+
36
+ def generate_loop(self, batch, window_size):
37
+ prompt_interaction = batch["prompt_interaction"]
38
+
39
+ if self.mode != "individual":
40
+ prompt_individual1 = batch["prompt_individual1"]
41
+ prompt_individual2 = batch["prompt_individual2"]
42
+
43
+ batch = copy.deepcopy(batch)
44
+ batch["motion_lens"][:] = window_size
45
+
46
+ batch["text"] = [prompt_interaction]
47
+ if self.mode != "individual":
48
+ batch["text_individual1"] = [prompt_individual1]
49
+ batch["text_individual2"] = [prompt_individual2]
50
+
51
+ batch = self.model.forward_test(batch)
52
+
53
+ if self.mode == "individual":
54
+ motion_output = batch["output"][0].reshape(-1, 262)
55
+ motion_output = self.normalizer.backward(motion_output.cpu().detach().numpy())
56
+ joints3d = motion_output[:,:22*3].reshape(-1,22,3)
57
+ joints3d = gaussian_filter1d(joints3d, 1, axis=0, mode='nearest')
58
+ return joints3d
59
+
60
+ motion_output_both = batch["output"][0].reshape(batch["output"][0].shape[0], 2, -1)
61
+ motion_output_both = self.normalizer.backward(motion_output_both.cpu().detach().numpy())
62
+
63
+ sequences = [[], []]
64
+ for j in range(2):
65
+ motion_output = motion_output_both[:,j]
66
+ joints3d = motion_output[:,:22*3].reshape(-1,22,3)
67
+ joints3d = gaussian_filter1d(joints3d, 1, axis=0, mode='nearest')
68
+ sequences[j].append(joints3d)
69
+
70
+ sequences[0] = np.concatenate(sequences[0], axis=0)
71
+ sequences[1] = np.concatenate(sequences[1], axis=0)
72
+ return sequences
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:886d29d2234e2f114ef4221b99a1b01e3d4b739de69c97793c6d869f43606463
3
+ size 1242367342