File size: 2,416 Bytes
ef5324d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from typing import Dict, List, Any
from unsloth.chat_templates import get_chat_template
from unsloth import FastLanguageModel
class EndpointHandler():
    def __init__(self, path=""):
        # Preload all the elements you are going to need at inference.
        # pseudo:
        # self.model= load_model(path)
        max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
        dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
        load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
        model, tokenizer = FastLanguageModel.from_pretrained(
            model_name = path, # YOUR MODEL YOU USED FOR TRAINING
            max_seq_length = max_seq_length,
            dtype = dtype,
            load_in_4bit = load_in_4bit,
            # token=hftoken
        )
        FastLanguageModel.for_inference(model)
        self.model = model
        self.tokenizer = tokenizer

    def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
        """
       data args:
            inputs (:obj: `str` | `PIL.Image` | `np.array`)
            kwargs
      Return:
            A :obj:`list` | `dict`: will be serialized and returned
        """

        # pseudo
        # self.model(input)
        messages = data
        # tokenizer = self.tokenizer
        self.tokenizer = get_chat_template(
            self.tokenizer,
            chat_template = "chatml", # Supports zephyr, chatml, mistral, llama, alpaca, vicuna, vicuna_old, unsloth
            mapping = {"role" : "from",
                      "content" : "value",
                      "user" : "human",
                      "assistant" : "gpt"}, # ShareGPT style
            map_eos_token = True, # Maps <|im_end|> to  instead
        )
        inputs = self.tokenizer.apply_chat_template(
            messages,
            tokenize = True,
            add_generation_prompt = True, # Must add for generation
            return_tensors = "pt",
        ).to("cuda")

        # from transformers import TextStreamer
        # text_streamer = TextStreamer(tokenizer)
        # _ = model.generate(input_ids = inputs, streamer = text_streamer, max_new_tokens = 128, use_cache = True)
        outputs = self.model.generate(input_ids = inputs, max_new_tokens = 64, use_cache = True)
        # print(outputs)
        return self.tokenizer.batch_decode(outputs)