--- library_name: transformers tags: [] --- # Model Card for Model ID ## Model Details ### Model Description This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. Import important libraries ``` import transformers import torch from transformers import pipeline import accelerate ``` Prepare model and tokenizer ``` from transformers import AutoTokenizer, AutoModelForCausalLM model_id = "pankaj9075rawat/DevsDoCode_LLama-3-8b-Uncensored" # Load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", ) ``` Build Pipeline for text generation ``` pipeline = pipeline( "text-generation", model=model, tokenizer=tokenizer, # model_kwargs={"torch_dtype": torch.bfloat16}, # device="cuda", # device_map="auto", # token=access_token ) terminators = [ pipeline.tokenizer.eos_token_id, pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>") ] ``` Build response function ``` def get_response( query, message_history=[], max_tokens=128, temperature=1.1, top_p=0.9 ): user_prompt = message_history + [{"role": "user", "content": query}] prompt = pipeline.tokenizer.apply_chat_template( user_prompt, tokenize=False, add_generation_prompt=True ) # print("prompt before coversion: ", user_prompt) # print("prompt after conversion: ", prompt) outputs = pipeline( prompt, max_new_tokens=max_tokens, eos_token_id=terminators, do_sample=True, temperature=temperature, top_p=top_p, ) response = outputs[0]["generated_text"][len(prompt):] return response, user_prompt + [{"role": "assistant", "content": response}] ``` Build chat on notebook itself (define a system prompt variable) ``` convers = [{"role": "system", "content": system_instruction}] def chat(): global convers response, convers = get_init_AI_response(convers) print("response:", response) while True: user_input = input("enter chat") if user_input.lower() in ["exit", "quit"]: return {"response": "Exiting the chatbot. Goodbye!"} response, convers = get_response(user_input, convers) print("response:", response) chat() ``` [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]