File size: 5,491 Bytes
58be4f8
 
 
5921341
 
 
58be4f8
5921341
 
55dc209
 
ad636d6
55dc209
5921341
4c98e7e
5921341
ad636d6
5921341
ad636d6
5921341
ad636d6
 
4c98e7e
55dc209
4c98e7e
58be4f8
4c98e7e
bb961f4
 
 
55dc209
 
 
bb961f4
58be4f8
 
 
 
bb961f4
55dc209
 
 
 
 
bb961f4
55dc209
 
 
 
 
74d1fbd
 
55dc209
74d1fbd
 
 
55dc209
 
45eb5a1
 
 
 
 
 
 
 
 
 
 
55dc209
45eb5a1
74d1fbd
45eb5a1
 
 
55dc209
 
 
 
45eb5a1
 
 
 
 
 
 
 
 
 
6b17915
45eb5a1
74d1fbd
8889e72
 
abb6ec3
 
8889e72
 
 
 
 
ad636d6
45eb5a1
 
 
 
 
abb6ec3
45eb5a1
 
 
 
abb6ec3
 
 
45eb5a1
c124536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abb6ec3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
---
language:
- en
library_name: transformers
datasets:
- psmathur/alpaca_orca
---
# Orca_alpaca_3b
An Open_LLaMA-3B model trained on explain tuned datasets, created using Instructions and Input from Alpaca datasets and applying Orca Research Paper dataset construction approaches.


# Dataset

We build explain tuned [Alpaca dataset ~52K](https://crfm.stanford.edu/2023/03/13/alpaca.html) created using approaches from [Orca Research Paper](https://arxiv.org/abs/2306.02707).

We leverage all of the 15 system instructions provided in Orca Research Paper. to generate custom datasets, in contrast to vanilla instruction tuning approaches used by original datasets.

This helps student model aka this model to learn ***thought*** process from teacher model, which is ChatGPT (gpt-3.5-turbo-0301 version).

Please see below example usage how the **System** prompt is added before each **instruction**.

# Training

The training configurations are provided in the table below.

The training takes on 4x A600(50G) GPUs and lasts for around 20 Hours for cost of $66 using [Lambda Labs](https://lambdalabs.com)

We used DeepSpeed with Zero-3 approaches for parallel gpu training by writing our own fine tunning scripts plus leveraging some of the model training code provided by amazing [OpenAlpaca repo](https://github.com/yxuansu/OpenAlpaca)

Here are some of params used during training:

|||
|:-------------:|:-------------:|
|*batch_size*|16|
|*train_micro_batch_size_per_gpu*|2|
|*gradient_accumulation_steps*|2|
|*Learning rate*|2e-5|
|*Max length*|1024|
|*Epochs*|3|



# Example Usage

Below shows an example on how to use [alpaca_orca_open_llama_3b](psmathur/alpaca_orca_open_llama_3b)

```python
import torch
from transformers import LlamaForCausalLM, LlamaTokenizer

# change model_path between 3b,7b or 13b
model_path = 'psmathur/alpaca_orca_open_llama_3b'
tokenizer = LlamaTokenizer.from_pretrained(model_path)
model = LlamaForCausalLM.from_pretrained(
    model_path, torch_dtype=torch.float16, device_map='auto',
)


#generate text function
def generate_text(system, instruction, input=None):
    
    if input:
        prompt = f"### System:\n{system}\n\n#\n\n### User:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n"
    else:
        prompt = f"### System:\n{system}\n\n#\n\n### User:\n{instruction}\n\n### Response:\n"
    
    tokens = tokenizer.encode(prompt)
    tokens = torch.LongTensor(tokens).unsqueeze(0)
    tokens = tokens.to('cuda')

    instance = {'input_ids': tokens,'top_p': 1.0, 'temperature':0.7, 'generate_len': 1024}

    length = len(tokens[0])
    with torch.no_grad():
        rest = model.generate(
            input_ids=tokens, 
            max_length=length+instance['generate_len'], 
            use_cache=True, 
            do_sample=True, 
            top_p=instance['top_p'],
            temperature=instance['temperature']
        )    
    output = rest[0][length:]
    string = tokenizer.decode(output, skip_special_tokens=True)
    print(f'[!] Response: {string}')

# same prompt as provided by Orca Research Paper
system = 'You are an AI assistant. User will you give you a task. Your goal is to complete the task as faithfully as you can. While performing the task think step-by-step and justify your steps.'
instruction = 'Use the given data to calculate the median.'
input = '[5,2,3,4,1]'
generate_text(system, instruction, input)

```

**P.S. I am #opentowork and #collaboration, if you can help, please reach out to me at [email protected]**

Next Goals:
1) Try more data, Dolly V2, WizardLM, & Others (we are open for suggestions)
2) Try bigger OpenLLaMA models 7B and 13B
3) Try better GPU for training, couldn't get 8xA100 (40GB), I guess they are in hot demand now.
4) Provide more options for Text generation UI. (may be https://github.com/oobabooga/text-generation-webui)
6) Provide 4bit GGML/GPTQ quantized model (may be [TheBloke](https://huggingface.co/TheBloke) can help here)


Reference:
If you found [alpaca_orca_open_llama_3b](psmathur/alpaca_orca_open_llama_3b) useful in your research or applications, please kindly cite using the following BibTeX:

```
@misc{alpaca_orca_open_llama_3b,
  author = {Pankaj Mathur},
  title = {alpaca_orca_open_llama_3b: A custom explain tuned Alpaca Model Based On OpenLLaMA},
  year = {2023},
  publisher = {GitHub, HuggingFace},
  journal = {GitHub repository, HuggingFace repository},
  howpublished = {\url{https://github.com/pankajarm/alpaca_orca_open_llama_3b}, \url{https://https://huggingface.co/psmathur/alpaca_orca_open_llama_3b}},
}
```
```
@software{openlm2023openllama,
  author = {Xinyang Geng and Hao Liu},
  title = {OpenLLaMA: An Open Reproduction of LLaMA},
  month = May,
  year = 2023,
  url = {https://github.com/openlm-research/open_llama}
}
```
```
@misc{openalpaca,
  author = {Yixuan Su and Tian Lan and Deng Cai},
  title = {OpenAlpaca: A Fully Open-Source Instruction-Following Model Based On OpenLLaMA},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/yxuansu/OpenAlpaca}},
}
```
```
@misc{alpaca,
  author = {Rohan Taori and Ishaan Gulrajani and Tianyi Zhang and Yann Dubois and Xuechen Li and Carlos Guestrin and Percy Liang and Tatsunori B. Hashimoto },
  title = {Stanford Alpaca: An Instruction-following LLaMA model},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/tatsu-lab/stanford_alpaca}},
}
```