Pankaj Mathur
commited on
Commit
•
b02da34
1
Parent(s):
d3e5979
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,145 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
library_name: adapter-transformers
|
6 |
---
|
7 |
+
# Wizardlm Alpaca Dolly Orca Open_LLaMa_13b
|
8 |
+
An Open_LLaMA-13B model trained on custom explain tuned datasets, created using Instructions and Input from WizardLM, Alpaca & Dolly-V2 datasets and applying [Orca Research Paper](https://arxiv.org/abs/2306.02707) dataset construction approaches.
|
9 |
+
|
10 |
+
|
11 |
+
# Dataset
|
12 |
+
|
13 |
+
We trained [OpenLLaMa-3B model](https://github.com/openlm-research/open_llama) on custom explain tuned [Alpaca dataset](https://crfm.stanford.edu/2023/03/13/alpaca.html) (~52K) created using approaches from [Orca Research Paper](https://arxiv.org/abs/2306.02707).
|
14 |
+
|
15 |
+
We leverage all of the 15 system instructions provided in [Orca Research Paper](https://arxiv.org/abs/2306.02707) to generate custom Alpaca dataset, in contrast to vanilla instruction tuning approaches used by original [Alpaca research paper](https://crfm.stanford.edu/2023/03/13/alpaca.html).
|
16 |
+
|
17 |
+
This helps student model aka [alpaca_orca_open_llama_3b](psmathur/alpaca_orca_open_llama_3b) to learn ***thought*** process from teacher model, which is ChatGPT (gpt-3.5-turbo-0301 version).
|
18 |
+
|
19 |
+
Please see below example usage how the **System** prompt is added before each *instruction*.
|
20 |
+
|
21 |
+
# Training
|
22 |
+
|
23 |
+
The training configurations are provided in the table below.
|
24 |
+
|
25 |
+
The training takes on 4x A600(50G) GPUs and lasts for around 20 Hours for cost of $66 using [Lambda Labs](https://lambdalabs.com)
|
26 |
+
|
27 |
+
We used DeepSpeed with Zero-3 approaches for parallel gpu training by writing our own fine tunning scripts plus leveraging some of the model training code provided by amazing [OpenAlpaca repo](https://github.com/yxuansu/OpenAlpaca)
|
28 |
+
|
29 |
+
Here are some of params used during training:
|
30 |
+
|
31 |
+
|||
|
32 |
+
|:-------------:|:-------------:|
|
33 |
+
|*batch_size*|16|
|
34 |
+
|*train_micro_batch_size_per_gpu*|2|
|
35 |
+
|*gradient_accumulation_steps*|2|
|
36 |
+
|*Learning rate*|2e-5|
|
37 |
+
|*Max length*|1024|
|
38 |
+
|*Epochs*|3|
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
# Example Usage
|
43 |
+
|
44 |
+
Below shows an example on how to use [alpaca_orca_open_llama_3b](psmathur/alpaca_orca_open_llama_3b)
|
45 |
+
|
46 |
+
```python
|
47 |
+
import torch
|
48 |
+
from transformers import LlamaForCausalLM, LlamaTokenizer
|
49 |
+
|
50 |
+
# change model_path between 3b,7b or 13b
|
51 |
+
model_path = 'psmathur/alpaca_orca_open_llama_3b'
|
52 |
+
tokenizer = LlamaTokenizer.from_pretrained(model_path)
|
53 |
+
model = LlamaForCausalLM.from_pretrained(
|
54 |
+
model_path, torch_dtype=torch.float16, device_map='auto',
|
55 |
+
)
|
56 |
+
|
57 |
+
|
58 |
+
#generate text function
|
59 |
+
def generate_text(system, instruction, input=None):
|
60 |
+
|
61 |
+
if input:
|
62 |
+
prompt = f"### System:\n{system}\n\n#\n\n### User:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n"
|
63 |
+
else:
|
64 |
+
prompt = f"### System:\n{system}\n\n#\n\n### User:\n{instruction}\n\n### Response:\n"
|
65 |
+
|
66 |
+
tokens = tokenizer.encode(prompt)
|
67 |
+
tokens = torch.LongTensor(tokens).unsqueeze(0)
|
68 |
+
tokens = tokens.to('cuda')
|
69 |
+
|
70 |
+
instance = {'input_ids': tokens,'top_p': 1.0, 'temperature':0.7, 'generate_len': 1024}
|
71 |
+
|
72 |
+
length = len(tokens[0])
|
73 |
+
with torch.no_grad():
|
74 |
+
rest = model.generate(
|
75 |
+
input_ids=tokens,
|
76 |
+
max_length=length+instance['generate_len'],
|
77 |
+
use_cache=True,
|
78 |
+
do_sample=True,
|
79 |
+
top_p=instance['top_p'],
|
80 |
+
temperature=instance['temperature']
|
81 |
+
)
|
82 |
+
output = rest[0][length:]
|
83 |
+
string = tokenizer.decode(output, skip_special_tokens=True)
|
84 |
+
print(f'[!] Response: {string}')
|
85 |
+
|
86 |
+
# same prompt as provided by Orca Research Paper
|
87 |
+
system = 'You are an AI assistant. User will you give you a task. Your goal is to complete the task as faithfully as you can. While performing the task think step-by-step and justify your steps.'
|
88 |
+
instruction = 'Use the given data to calculate the median.'
|
89 |
+
input = '[5,2,3,4,1]'
|
90 |
+
generate_text(system, instruction, input)
|
91 |
+
|
92 |
+
```
|
93 |
+
|
94 |
+
**P.S. I am #opentowork and #collaboration, if you can help, please reach out to me at [email protected]**
|
95 |
+
|
96 |
+
Next Goals:
|
97 |
+
1) Try more data, Dolly V2, WizardLM, & Others (we are open for suggestions)
|
98 |
+
2) Try bigger OpenLLaMA models 7B and 13B
|
99 |
+
3) Try better GPU for training, couldn't get 8xA100 (40GB), I guess they are in hot demand now.
|
100 |
+
4) Provide more options for Text generation UI. (may be https://github.com/oobabooga/text-generation-webui)
|
101 |
+
6) Provide 4bit GGML/GPTQ quantized model (may be [TheBloke](https://huggingface.co/TheBloke) can help here)
|
102 |
+
|
103 |
+
|
104 |
+
Reference:
|
105 |
+
If you found [alpaca_orca_open_llama_3b](psmathur/alpaca_orca_open_llama_3b) useful in your research or applications, please kindly cite using the following BibTeX:
|
106 |
+
|
107 |
+
```
|
108 |
+
@misc{alpaca_orca_open_llama_3b,
|
109 |
+
author = {Pankaj Mathur},
|
110 |
+
title = {alpaca_orca_open_llama_3b: A custom explain tuned Alpaca Model Based On OpenLLaMA},
|
111 |
+
year = {2023},
|
112 |
+
publisher = {GitHub, HuggingFace},
|
113 |
+
journal = {GitHub repository, HuggingFace repository},
|
114 |
+
howpublished = {\url{https://github.com/pankajarm/alpaca_orca_open_llama_3b}, \url{https://https://huggingface.co/psmathur/alpaca_orca_open_llama_3b}},
|
115 |
+
}
|
116 |
+
```
|
117 |
+
```
|
118 |
+
@software{openlm2023openllama,
|
119 |
+
author = {Xinyang Geng and Hao Liu},
|
120 |
+
title = {OpenLLaMA: An Open Reproduction of LLaMA},
|
121 |
+
month = May,
|
122 |
+
year = 2023,
|
123 |
+
url = {https://github.com/openlm-research/open_llama}
|
124 |
+
}
|
125 |
+
```
|
126 |
+
```
|
127 |
+
@misc{openalpaca,
|
128 |
+
author = {Yixuan Su and Tian Lan and Deng Cai},
|
129 |
+
title = {OpenAlpaca: A Fully Open-Source Instruction-Following Model Based On OpenLLaMA},
|
130 |
+
year = {2023},
|
131 |
+
publisher = {GitHub},
|
132 |
+
journal = {GitHub repository},
|
133 |
+
howpublished = {\url{https://github.com/yxuansu/OpenAlpaca}},
|
134 |
+
}
|
135 |
+
```
|
136 |
+
```
|
137 |
+
@misc{alpaca,
|
138 |
+
author = {Rohan Taori and Ishaan Gulrajani and Tianyi Zhang and Yann Dubois and Xuechen Li and Carlos Guestrin and Percy Liang and Tatsunori B. Hashimoto },
|
139 |
+
title = {Stanford Alpaca: An Instruction-following LLaMA model},
|
140 |
+
year = {2023},
|
141 |
+
publisher = {GitHub},
|
142 |
+
journal = {GitHub repository},
|
143 |
+
howpublished = {\url{https://github.com/tatsu-lab/stanford_alpaca}},
|
144 |
+
}
|
145 |
+
```
|