Papers
arxiv:2311.08263

Fast Chain-of-Thought: A Glance of Future from Parallel Decoding Leads to Answers Faster

Published on Nov 14, 2023
· Submitted by akhaliq on Nov 15, 2023
Authors:
,
,
,
,

Abstract

In this work, we propose FastCoT, a model-agnostic framework based on parallel decoding without any further training of an auxiliary model or modification to the LLM itself. FastCoT uses a size-varying context window whose size changes with position to conduct parallel decoding and auto-regressive decoding simultaneously, thus fully utilizing GPU computation resources. In FastCoT, the parallel decoding part provides the LLM with a quick glance of the future composed of approximate tokens, which could lead to faster answers compared to regular autoregressive decoding used by causal transformers. We also provide an implementation of parallel decoding within LLM, which supports KV-cache generation and batch processing. Through extensive experiments, we demonstrate that FastCoT saves inference time by nearly 20% with only a negligible performance drop compared to the regular approach. Additionally, we show that the context window size exhibits considerable robustness for different tasks.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2311.08263 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2311.08263 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2311.08263 in a Space README.md to link it from this page.

Collections including this paper 12