Papers
arxiv:2402.12560

CausalGym: Benchmarking causal interpretability methods on linguistic tasks

Published on Feb 19
Authors:
,

Abstract

Language models (LMs) have proven to be powerful tools for psycholinguistic research, but most prior work has focused on purely behavioural measures (e.g., surprisal comparisons). At the same time, research in model interpretability has begun to illuminate the abstract causal mechanisms shaping LM behavior. To help bring these strands of research closer together, we introduce CausalGym. We adapt and expand the SyntaxGym suite of tasks to benchmark the ability of interpretability methods to causally affect model behaviour. To illustrate how CausalGym can be used, we study the pythia models (14M--6.9B) and assess the causal efficacy of a wide range of interpretability methods, including linear probing and distributed alignment search (DAS). We find that DAS outperforms the other methods, and so we use it to study the learning trajectory of two difficult linguistic phenomena in pythia-1b: negative polarity item licensing and filler--gap dependencies. Our analysis shows that the mechanism implementing both of these tasks is learned in discrete stages, not gradually.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2402.12560 in a model README.md to link it from this page.

Datasets citing this paper 1

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2402.12560 in a Space README.md to link it from this page.

Collections including this paper 2