Papers
arxiv:2409.00447

The MERIT Dataset: Modelling and Efficiently Rendering Interpretable Transcripts

Published on Aug 31
· Submitted by de-Rodrigo on Sep 4
Authors:
,
,

Abstract

This paper introduces the MERIT Dataset, a multimodal (text + image + layout) fully labeled dataset within the context of school reports. Comprising over 400 labels and 33k samples, the MERIT Dataset is a valuable resource for training models in demanding Visually-rich Document Understanding (VrDU) tasks. By its nature (student grade reports), the MERIT Dataset can potentially include biases in a controlled way, making it a valuable tool to benchmark biases induced in Language Models (LLMs). The paper outlines the dataset's generation pipeline and highlights its main features in the textual, visual, layout, and bias domains. To demonstrate the dataset's utility, we present a benchmark with token classification models, showing that the dataset poses a significant challenge even for SOTA models and that these would greatly benefit from including samples from the MERIT Dataset in their pretraining phase.

Community

Paper author Paper submitter

You can explore more here:

Thanks!

This is an automated message from the Librarian Bot. I found the following papers similar to this paper.

The following papers were recommended by the Semantic Scholar API

Please give a thumbs up to this comment if you found it helpful!

If you want recommendations for any Paper on Hugging Face checkout this Space

You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: @librarian-bot recommend

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2409.00447 in a model README.md to link it from this page.

Datasets citing this paper 1

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2409.00447 in a Space README.md to link it from this page.

Collections including this paper 3