γ-MoD: Exploring Mixture-of-Depth Adaptation for Multimodal Large Language Models
Abstract
Despite the significant progress in multimodal large language models (MLLMs), their high computational cost remains a barrier to real-world deployment. Inspired by the mixture of depths (MoDs) in natural language processing, we aim to address this limitation from the perspective of ``activated tokens''. Our key insight is that if most tokens are redundant for the layer computation, then can be skipped directly via the MoD layer. However, directly converting the dense layers of MLLMs to MoD layers leads to substantial performance degradation. To address this issue, we propose an innovative MoD adaptation strategy for existing MLLMs called gamma-MoD. In gamma-MoD, a novel metric is proposed to guide the deployment of MoDs in the MLLM, namely rank of attention maps (ARank). Through ARank, we can effectively identify which layer is redundant and should be replaced with the MoD layer. Based on ARank, we further propose two novel designs to maximize the computational sparsity of MLLM while maintaining its performance, namely shared vision-language router and masked routing learning. With these designs, more than 90% dense layers of the MLLM can be effectively converted to the MoD ones. To validate our method, we apply it to three popular MLLMs, and conduct extensive experiments on 9 benchmark datasets. Experimental results not only validate the significant efficiency benefit of gamma-MoD to existing MLLMs but also confirm its generalization ability on various MLLMs. For example, with a minor performance drop, i.e., -1.5%, gamma-MoD can reduce the training and inference time of LLaVA-HR by 31.0% and 53.2%, respectively.
Community
γ-MOD is a novel approach to enhance computational efficiency in Multimodal Large Language Models (MLLMs) by incorporating Mixture-of-Depth (MoD) layers. This plug-and-play strategy seamlessly replaces redundant dense layers, significantly reducing computational costs while maintaining performance.
This is an automated message from the Librarian Bot. I found the following papers similar to this paper.
The following papers were recommended by the Semantic Scholar API
- Mono-InternVL: Pushing the Boundaries of Monolithic Multimodal Large Language Models with Endogenous Visual Pre-training (2024)
- Fit and Prune: Fast and Training-free Visual Token Pruning for Multi-modal Large Language Models (2024)
- LLaVA-MoD: Making LLaVA Tiny via MoE Knowledge Distillation (2024)
- SparseVLM: Visual Token Sparsification for Efficient Vision-Language Model Inference (2024)
- EE-MLLM: A Data-Efficient and Compute-Efficient Multimodal Large Language Model (2024)
Please give a thumbs up to this comment if you found it helpful!
If you want recommendations for any Paper on Hugging Face checkout this Space
You can directly ask Librarian Bot for paper recommendations by tagging it in a comment:
@librarian-bot
recommend
Models citing this paper 1
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper