|
from typing import Dict, List, Any |
|
|
|
from transformers import Blip2Processor, Blip2ForConditionalGeneration |
|
|
|
from PIL import Image |
|
from io import BytesIO |
|
import torch, re, base64 |
|
|
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
|
|
|
|
self.processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b") |
|
self.model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", device_map="auto") |
|
|
|
|
|
|
|
def __call__(self, data: Any) -> Dict[str, Any]: |
|
""" |
|
Args: |
|
data (:obj:): |
|
includes the input data and the parameters for the inference. |
|
Return: |
|
A :obj:`dict`:. The object returned should be a dict of one list like {"captions": ["A hugging face at the office"]} containing : |
|
- "caption": A string corresponding to the generated caption. |
|
""" |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
|
|
inputs = base64.b64decode(re.sub('^data:image/.+;base64,', '', data['inputs'])) |
|
|
|
raw_images = Image.open(BytesIO(inputs)) |
|
|
|
processed_image = self.processor(images=raw_images, return_tensors="pt").to(device) |
|
|
|
out = self.model.generate(**processed_image) |
|
|
|
captions = self.processor.decode(out[0], skip_special_tokens=True) |
|
|
|
|
|
return {"captions": captions} |
|
|
|
|
|
EndpointHandler() |