Updated handler.py
Browse files- handler.py +2 -9
handler.py
CHANGED
@@ -28,23 +28,16 @@ class EndpointHandler:
|
|
28 |
A :obj:`dict`:. The object returned should be a dict of one list like {"captions": ["A hugging face at the office"]} containing :
|
29 |
- "caption": A string corresponding to the generated caption.
|
30 |
"""
|
|
|
31 |
inputs = data.pop("inputs", data)
|
32 |
parameters = data.pop("parameters", {})
|
33 |
|
34 |
raw_images = Image.open(BytesIO(inputs))
|
35 |
-
|
36 |
-
inputs = self.processor(inputs, return_tensors="pt").to("cuda")
|
37 |
|
38 |
processed_image = self.processor(images=raw_images, return_tensors="pt").to(device)
|
39 |
|
40 |
out = self.model.generate(**processed_image)
|
41 |
-
|
42 |
-
# processed_image = {**processed_image, **parameters}
|
43 |
-
|
44 |
-
# with torch.no_grad():
|
45 |
-
# out = self.model.generate(
|
46 |
-
# **processed_image
|
47 |
-
# )
|
48 |
captions = self.processor.decode(out[0], skip_special_tokens=True)
|
49 |
|
50 |
# postprocess the prediction
|
|
|
28 |
A :obj:`dict`:. The object returned should be a dict of one list like {"captions": ["A hugging face at the office"]} containing :
|
29 |
- "caption": A string corresponding to the generated caption.
|
30 |
"""
|
31 |
+
|
32 |
inputs = data.pop("inputs", data)
|
33 |
parameters = data.pop("parameters", {})
|
34 |
|
35 |
raw_images = Image.open(BytesIO(inputs))
|
|
|
|
|
36 |
|
37 |
processed_image = self.processor(images=raw_images, return_tensors="pt").to(device)
|
38 |
|
39 |
out = self.model.generate(**processed_image)
|
40 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
captions = self.processor.decode(out[0], skip_special_tokens=True)
|
42 |
|
43 |
# postprocess the prediction
|