File size: 7,750 Bytes
006f06c
eb63880
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dfd5a6
 
 
eb63880
 
006f06c
4dfd5a6
d71e600
 
eb63880
d71e600
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb63880
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
---
pipeline_tag: sentence-similarity
tags:
- text-embedding
- embeddings
- information-retrieval
- beir
- text-classification
- language-model
- text-clustering
- text-semantic-similarity
- text-evaluation
- prompt-retrieval
- text-reranking
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- t5
- English
- Sentence Similarity
- natural_questions
- ms_marco
- fever
- hotpot_qa
- mteb
language:
- en
- de
inference: false
license: apache-2.0
---

# pascalhuerten/instructor-skillfit
A finetuning of hkunlp/instructor-base specialized on performing retrival of relevant skills based on a given learning outcome.

## Skill Retrieval
You can use **customized embeddings** for skill retrieval.
```python
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
query  = [['Represent the learning outcome for retrieval: : ','WordPress installieren\nWebsite- oder Blogplanung\nPlugins und Widges einfügen']]
corpus = [['Represent the skill for retrieval: ','WordPress'],
          ['Represent the skill for retrieval: ','Website-Wireframe erstellen'],
          ['Represent the skill for retrieval: ','Software für Content-Management-Systeme nutzen']]
query_embeddings = model.encode(query)
corpus_embeddings = model.encode(corpus)
similarities = cosine_similarity(query_embeddings,corpus_embeddings)
retrieved_doc_id = np.argmax(similarities)
print(retrieved_doc_id)
```

## hkunlp/instructor-base
We introduce **Instructor**👨‍🏫, an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g., classification, retrieval, clustering, text evaluation, etc.) and domains (e.g., science, finance, etc.) ***by simply providing the task instruction, without any finetuning***. Instructor👨‍ achieves sota on 70 diverse embedding tasks!
The model is easy to use with **our customized** `sentence-transformer` library. For more details, check out [our paper](https://arxiv.org/abs/2212.09741) and [project page](https://instructor-embedding.github.io/)! 

**************************** **Updates** ****************************

* 01/21: We released a new [checkpoint](https://huggingface.co/hkunlp/instructor-base) trained with hard negatives, which gives better performance.
* 12/21: We released our [paper](https://arxiv.org/abs/2212.09741), [code](https://github.com/HKUNLP/instructor-embedding), [checkpoint](https://huggingface.co/hkunlp/instructor-base) and [project page](https://instructor-embedding.github.io/)! Check them out!

## Quick start
<hr />

## Installation
```bash
pip install InstructorEmbedding
```

## Compute your customized embeddings
Then you can use the model like this to calculate domain-specific and task-aware embeddings:
```python
from InstructorEmbedding import INSTRUCTOR
model = INSTRUCTOR('hkunlp/instructor-base')
sentence = "3D ActionSLAM: wearable person tracking in multi-floor environments"
instruction = "Represent the Science title:"
embeddings = model.encode([[instruction,sentence]])
print(embeddings)
```

## Use cases
<hr />

## Calculate embeddings for your customized texts
If you want to calculate customized embeddings for specific sentences, you may follow the unified template to write instructions: 

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Represent the `domain` `text_type` for `task_objective`:
* `domain` is optional, and it specifies the domain of the text, e.g., science, finance, medicine, etc.
* `text_type` is required, and it specifies the encoding unit, e.g., sentence, document, paragraph, etc.
* `task_objective` is optional, and it specifies the objective of embedding, e.g., retrieve a document, classify the sentence, etc.

## Calculate Sentence similarities
You can further use the model to compute similarities between two groups of sentences, with **customized embeddings**.
```python
from sklearn.metrics.pairwise import cosine_similarity
sentences_a = [['Represent the Science sentence: ','Parton energy loss in QCD matter'], 
               ['Represent the Financial statement: ','The Federal Reserve on Wednesday raised its benchmark interest rate.']]
sentences_b = [['Represent the Science sentence: ','The Chiral Phase Transition in Dissipative Dynamics'],
               ['Represent the Financial statement: ','The funds rose less than 0.5 per cent on Friday']]
embeddings_a = model.encode(sentences_a)
embeddings_b = model.encode(sentences_b)
similarities = cosine_similarity(embeddings_a,embeddings_b)
print(similarities)
```

## Information Retrieval
You can also use **customized embeddings** for information retrieval.
```python
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
query  = [['Represent the Wikipedia question for retrieving supporting documents: ','where is the food stored in a yam plant']]
corpus = [['Represent the Wikipedia document for retrieval: ','Capitalism has been dominant in the Western world since the end of feudalism, but most feel[who?] that the term "mixed economies" more precisely describes most contemporary economies, due to their containing both private-owned and state-owned enterprises. In capitalism, prices determine the demand-supply scale. For example, higher demand for certain goods and services lead to higher prices and lower demand for certain goods lead to lower prices.'],
          ['Represent the Wikipedia document for retrieval: ',"The disparate impact theory is especially controversial under the Fair Housing Act because the Act regulates many activities relating to housing, insurance, and mortgage loans—and some scholars have argued that the theory's use under the Fair Housing Act, combined with extensions of the Community Reinvestment Act, contributed to rise of sub-prime lending and the crash of the U.S. housing market and ensuing global economic recession"],
          ['Represent the Wikipedia document for retrieval: ','Disparate impact in United States labor law refers to practices in employment, housing, and other areas that adversely affect one group of people of a protected characteristic more than another, even though rules applied by employers or landlords are formally neutral. Although the protected classes vary by statute, most federal civil rights laws protect based on race, color, religion, national origin, and sex as protected traits, and some laws include disability status and other traits as well.']]
query_embeddings = model.encode(query)
corpus_embeddings = model.encode(corpus)
similarities = cosine_similarity(query_embeddings,corpus_embeddings)
retrieved_doc_id = np.argmax(similarities)
print(retrieved_doc_id)
```

## Clustering
Use **customized embeddings** for clustering texts in groups.
```python
import sklearn.cluster
sentences = [['Represent the Medicine sentence for clustering: ','Dynamical Scalar Degree of Freedom in Horava-Lifshitz Gravity'],
             ['Represent the Medicine sentence for clustering: ','Comparison of Atmospheric Neutrino Flux Calculations at Low Energies'],
             ['Represent the Medicine sentence for clustering: ','Fermion Bags in the Massive Gross-Neveu Model'],
             ['Represent the Medicine sentence for clustering: ',"QCD corrections to Associated t-tbar-H production at the Tevatron"],
             ['Represent the Medicine sentence for clustering: ','A New Analysis of the R Measurements: Resonance Parameters of the Higher,  Vector States of Charmonium']]
embeddings = model.encode(sentences)
clustering_model = sklearn.cluster.MiniBatchKMeans(n_clusters=2)
clustering_model.fit(embeddings)
cluster_assignment = clustering_model.labels_
print(cluster_assignment)
```