--- library_name: transformers datasets: - pasukka/autoparts_filters license: apache-2.0 language: - ru metrics: - f1 - accuracy base_model: ai-forever/ruRoberta-large --- # Model Card for Model ID ## Model Details ### Model Description - **Language(s) (NLP):** Russian - **License:** apache-2.0 - **Finetuned from model:** ai-forever/ruRoberta-large ## Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification model = AutoModelForSequenceClassification.from_pretrained("pasukka/auto-filters-term-classifier-v.0.2") tokenizer = AutoTokenizer.from_pretrained('ai-forever/ruRoberta-large') term = 'фильтр топливный' outputs = model.forward(**tokenizer(term, return_tensors='pt').to(device='cuda')) id = outputs.logits.argmax(dim=1)[0].item() print(model.config.id2label[id]) ``` Result: ``` фильтр ``` ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary