--- license: apache-2.0 tags: - speech-recognition - librispeech_asr - generated_from_trainer model-index: - name: wav2vec2-librispeech-clean-100h-demo-dist results: [] --- # wav2vec2-librispeech-clean-100h-demo-dist This model is a fine-tuned version of [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) on the LIBRISPEECH_ASR - CLEAN dataset. It achieves the following results on the evaluation set: - Loss: 0.0572 - Wer: 0.0417 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.399 | 0.11 | 100 | 3.6153 | 1.0 | | 2.8892 | 0.22 | 200 | 2.8963 | 1.0 | | 2.8284 | 0.34 | 300 | 2.8574 | 1.0 | | 0.7347 | 0.45 | 400 | 0.6158 | 0.4850 | | 0.1138 | 0.56 | 500 | 0.2038 | 0.1560 | | 0.248 | 0.67 | 600 | 0.1274 | 0.1024 | | 0.2586 | 0.78 | 700 | 0.1108 | 0.0876 | | 0.0733 | 0.9 | 800 | 0.0936 | 0.0762 | | 0.044 | 1.01 | 900 | 0.0834 | 0.0662 | | 0.0393 | 1.12 | 1000 | 0.0792 | 0.0622 | | 0.0941 | 1.23 | 1100 | 0.0769 | 0.0627 | | 0.036 | 1.35 | 1200 | 0.0731 | 0.0603 | | 0.0768 | 1.46 | 1300 | 0.0713 | 0.0559 | | 0.0518 | 1.57 | 1400 | 0.0686 | 0.0537 | | 0.0815 | 1.68 | 1500 | 0.0639 | 0.0515 | | 0.0603 | 1.79 | 1600 | 0.0636 | 0.0500 | | 0.056 | 1.91 | 1700 | 0.0609 | 0.0480 | | 0.0265 | 2.02 | 1800 | 0.0621 | 0.0465 | | 0.0496 | 2.13 | 1900 | 0.0607 | 0.0449 | | 0.0436 | 2.24 | 2000 | 0.0591 | 0.0446 | | 0.0421 | 2.35 | 2100 | 0.0590 | 0.0428 | | 0.0641 | 2.47 | 2200 | 0.0603 | 0.0443 | | 0.0466 | 2.58 | 2300 | 0.0580 | 0.0429 | | 0.0132 | 2.69 | 2400 | 0.0574 | 0.0423 | | 0.0073 | 2.8 | 2500 | 0.0586 | 0.0417 | | 0.0021 | 2.91 | 2600 | 0.0574 | 0.0412 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3