--- language: - tr tags: - automatic-speech-recognition - common_voice - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-xls-r-phoneme-300m-tr results: [] --- # Wav2vec2-xls-r-phoneme-300m-tr This model is a fine-tuned version of [wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.6380 - PER: 0.1664 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | PER | |:-------------:|:-----:|:----:|:---------------:|:------:| | 13.6687 | 0.92 | 100 | 12.4567 | 1.0 | | 3.4219 | 1.83 | 200 | 3.4704 | 1.0 | | 3.1846 | 2.75 | 300 | 3.2281 | 0.9935 | | 2.0076 | 3.67 | 400 | 1.7415 | 0.5222 | | 1.0244 | 4.59 | 500 | 1.0290 | 0.3323 | | 0.7095 | 5.5 | 600 | 0.8424 | 0.2859 | | 0.619 | 6.42 | 700 | 0.7389 | 0.2232 | | 0.3541 | 7.34 | 800 | 0.7049 | 0.2043 | | 0.2946 | 8.26 | 900 | 0.7065 | 0.2153 | | 0.2868 | 9.17 | 1000 | 0.6840 | 0.2115 | | 0.2245 | 10.09 | 1100 | 0.6714 | 0.1952 | | 0.1394 | 11.01 | 1200 | 0.6864 | 0.1954 | | 0.1288 | 11.93 | 1300 | 0.6696 | 0.2017 | | 0.1568 | 12.84 | 1400 | 0.6468 | 0.1843 | | 0.1269 | 13.76 | 1500 | 0.6736 | 0.1965 | | 0.1101 | 14.68 | 1600 | 0.6689 | 0.1915 | | 0.1388 | 15.6 | 1700 | 0.6690 | 0.1782 | | 0.0739 | 16.51 | 1800 | 0.6364 | 0.1734 | | 0.0897 | 17.43 | 1900 | 0.6480 | 0.1748 | | 0.0795 | 18.35 | 2000 | 0.6356 | 0.1695 | | 0.0823 | 19.27 | 2100 | 0.6382 | 0.1685 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.8.1 - Datasets 1.16.2.dev0 - Tokenizers 0.10.3