pattonma commited on
Commit
3c9623b
1 Parent(s): 6a0219a

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,678 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-MiniLM-L6-v2
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy@1
6
+ - cosine_accuracy@3
7
+ - cosine_accuracy@5
8
+ - cosine_accuracy@10
9
+ - cosine_precision@1
10
+ - cosine_precision@3
11
+ - cosine_precision@5
12
+ - cosine_precision@10
13
+ - cosine_recall@1
14
+ - cosine_recall@3
15
+ - cosine_recall@5
16
+ - cosine_recall@10
17
+ - cosine_ndcg@10
18
+ - cosine_mrr@10
19
+ - cosine_map@100
20
+ - dot_accuracy@1
21
+ - dot_accuracy@3
22
+ - dot_accuracy@5
23
+ - dot_accuracy@10
24
+ - dot_precision@1
25
+ - dot_precision@3
26
+ - dot_precision@5
27
+ - dot_precision@10
28
+ - dot_recall@1
29
+ - dot_recall@3
30
+ - dot_recall@5
31
+ - dot_recall@10
32
+ - dot_ndcg@10
33
+ - dot_mrr@10
34
+ - dot_map@100
35
+ pipeline_tag: sentence-similarity
36
+ tags:
37
+ - sentence-transformers
38
+ - sentence-similarity
39
+ - feature-extraction
40
+ - generated_from_trainer
41
+ - dataset_size:600
42
+ - loss:MatryoshkaLoss
43
+ - loss:CoSENTLoss
44
+ - loss:MultipleNegativesRankingLoss
45
+ widget:
46
+ - source_sentence: What is meant by "mission creep" in the context of data collection,
47
+ and how can it be avoided?
48
+ sentences:
49
+ - "Moderator: Kathy Pham Evans, Deputy Chief Technology Officer for Product and\
50
+ \ Engineering, U.S \nFederal Trade Commission. \nPanelists: \n•\nLiz O’Sullivan,\
51
+ \ CEO, Parity AI\n•\nTimnit Gebru, Independent Scholar\n•\nJennifer Wortman Vaughan,\
52
+ \ Senior Principal Researcher, Microsoft Research, New York City\n•\nPamela Wisniewski,\
53
+ \ Associate Professor of Computer Science, University of Central Florida; Director,\n\
54
+ Socio-technical Interaction Research (STIR) Lab\n•\nSeny Kamara, Associate Professor\
55
+ \ of Computer Science, Brown University\nEach panelist individually emphasized\
56
+ \ the risks of using AI in high-stakes settings, including the potential for \n\
57
+ biased data and discriminatory outcomes, opaque decision-making processes, and\
58
+ \ lack of public trust and"
59
+ - "HUMAN ALTERNATIVES, \nCONSIDERATION, AND \nFALLBACK \nWHY THIS PRINCIPLE IS IMPORTANT\n\
60
+ This section provides a brief summary of the problems which the principle seeks\
61
+ \ to address and protect \nagainst, including illustrative examples. \n•\nAn unemployment\
62
+ \ benefits system in Colorado required, as a condition of accessing benefits,\
63
+ \ that applicants\nhave a smartphone in order to verify their identity. No alternative\
64
+ \ human option was readily available,\nwhich denied many people access to benefits.101\n\
65
+ •\nA fraud detection system for unemployment insurance distribution incorrectly\
66
+ \ flagged entries as fraudulent,\nleading to people with slight discrepancies\
67
+ \ or complexities in their files having their wages withheld and tax"
68
+ - "collection should be minimized and clearly communicated to the people whose data\
69
+ \ is collected. Data should \nonly be collected or used for the purposes of training\
70
+ \ or testing machine learning models if such collection and \nuse is legal and\
71
+ \ consistent with the expectations of the people whose data is collected. User\
72
+ \ experience \nresearch should be conducted to confirm that people understand\
73
+ \ what data is being collected about them and \nhow it will be used, and that\
74
+ \ this collection matches their expectations and desires. \nData collection and\
75
+ \ use-case scope limits. Data collection should be limited in scope, with specific,\
76
+ \ \nnarrow identified goals, to avoid \"mission creep.\" Anticipated data collection\
77
+ \ should be determined to be"
78
+ - source_sentence: How has the public's understanding of sensitive domains changed
79
+ over time?
80
+ sentences:
81
+ - "Proportionate. The availability of human consideration and fallback, along with\
82
+ \ associated training and \nsafeguards against human bias, should be proportionate\
83
+ \ to the potential of the automated system to meaning­\nfully impact rights, opportunities,\
84
+ \ or access. Automated systems that have greater control over outcomes, \nprovide\
85
+ \ input to high-stakes decisions, relate to sensitive domains, or otherwise have\
86
+ \ a greater potential to \nmeaningfully impact rights, opportunities, or access\
87
+ \ should have greater availability (e.g., staffing) and over­\nsight of human\
88
+ \ consideration and fallback mechanisms. \nAccessible. Mechanisms for human consideration\
89
+ \ and fallback, whether in-person, on paper, by phone, or"
90
+ - "DATA PRIVACY \nEXTRA PROTECTIONS FOR DATA RELATED TO SENSITIVE\nDOMAINS\nSome\
91
+ \ domains, including health, employment, education, criminal justice, and personal\
92
+ \ finance, have long been \nsingled out as sensitive domains deserving of enhanced\
93
+ \ data protections. This is due to the intimate nature of these \ndomains as well\
94
+ \ as the inability of individuals to opt out of these domains in any meaningful\
95
+ \ way, and the \nhistorical discrimination that has often accompanied data knowledge.69\
96
+ \ Domains understood by the public to be \nsensitive also change over time, including\
97
+ \ because of technological developments. Tracking and monitoring \ntechnologies,\
98
+ \ personal tracking devices, and our extensive data footprints are used and misused\
99
+ \ more than ever"
100
+ - "help to mitigate biases and potential harms. \nGuarding against proxies. Directly\
101
+ \ using demographic information in the design, development, or \ndeployment of\
102
+ \ an automated system (for purposes other than evaluating a system for discrimination\
103
+ \ or using \na system to counter discrimination) runs a high risk of leading to\
104
+ \ algorithmic discrimination and should be \navoided. In many cases, attributes\
105
+ \ that are highly correlated with demographic features, known as proxies, can\
106
+ \ \ncontribute to algorithmic discrimination. In cases where use of the demographic\
107
+ \ features themselves would \nlead to illegal algorithmic discrimination, reliance\
108
+ \ on such proxies in decision-making (such as that facilitated"
109
+ - source_sentence: Why is it important to assess the potential impact of surveillance
110
+ technologies on your rights, opportunities, or access?
111
+ sentences:
112
+ - "enforcement or national security restrictions prevent doing so. Care should be\
113
+ \ taken to balance individual \nprivacy with evaluation data access needs; in\
114
+ \ many cases, policy-based and/or technological innovations and \ncontrols allow\
115
+ \ access to such data without compromising privacy. \nReporting. Entities responsible\
116
+ \ for the development or use of automated systems should provide \nreporting of\
117
+ \ an appropriately designed algorithmic impact assessment,50 with clear specification\
118
+ \ of who \nperforms the assessment, who evaluates the system, and how corrective\
119
+ \ actions are taken (if necessary) in \nresponse to the assessment. This algorithmic\
120
+ \ impact assessment should include at least: the results of any"
121
+ - "SAFE AND EFFECTIVE \nSYSTEMS \nWHY THIS PRINCIPLE IS IMPORTANT\nThis section\
122
+ \ provides a brief summary of the problems which the principle seeks to address\
123
+ \ and protect \nagainst, including illustrative examples. \nWhile technologies\
124
+ \ are being deployed to solve problems across a wide array of issues, our reliance\
125
+ \ on technology can \nalso lead to its use in situations where it has not yet\
126
+ \ been proven to work—either at all or within an acceptable range \nof error.\
127
+ \ In other cases, technologies do not work as intended or as promised, causing\
128
+ \ substantial and unjustified harm. \nAutomated systems sometimes rely on data\
129
+ \ from other systems, including historical data, allowing irrelevant informa­"
130
+ - "access. Whenever possible, you should have access to reporting that confirms\
131
+ \ \nyour data decisions have been respected and provides an assessment of the\
132
+ \ \npotential impact of surveillance technologies on your rights, opportunities,\
133
+ \ or \naccess. \nDATA PRIVACY\n30"
134
+ - source_sentence: What is the purpose of the Blueprint for an AI Bill of Rights as
135
+ described in the context?
136
+ sentences:
137
+ - "in some cases. Many states have also enacted consumer data privacy protection\
138
+ \ regimes to address some of these \nharms. \nHowever, these are not yet standard\
139
+ \ practices, and the United States lacks a comprehensive statutory or regulatory\
140
+ \ \nframework governing the rights of the public when it comes to personal data.\
141
+ \ While a patchwork of laws exists to \nguide the collection and use of personal\
142
+ \ data in specific contexts, including health, employment, education, and credit,\
143
+ \ \nit can be unclear how these laws apply in other contexts and in an increasingly\
144
+ \ automated society. Additional protec­\ntions would assure the American public\
145
+ \ that the automated systems they use are not monitoring their activities,"
146
+ - "existing human performance considered as a performance baseline for the algorithm\
147
+ \ to meet pre-deployment, \nand as a lifecycle minimum performance standard. Decision\
148
+ \ possibilities resulting from performance testing \nshould include the possibility\
149
+ \ of not deploying the system. \nRisk identification and mitigation. Before deployment,\
150
+ \ and in a proactive and ongoing manner, poten­\ntial risks of the automated system\
151
+ \ should be identified and mitigated. Identified risks should focus on the \n\
152
+ potential for meaningful impact on people’s rights, opportunities, or access and\
153
+ \ include those to impacted \ncommunities that may not be direct users of the\
154
+ \ automated system, risks resulting from purposeful misuse of"
155
+ - "enforcement, and other regulatory contexts may require government actors to protect\
156
+ \ civil rights, civil liberties, \nand privacy in a manner consistent with, but\
157
+ \ using alternate mechanisms to, the specific principles discussed in \nthis framework.\
158
+ \ The Blueprint for an AI Bill of Rights is meant to assist governments and the\
159
+ \ private sector in \nmoving principles into practice. \nThe expectations given\
160
+ \ in the Technical Companion are meant to serve as a blueprint for the development\
161
+ \ of \nadditional technical standards and practices that should be tailored for\
162
+ \ particular sectors and contexts. While \nexisting laws informed the development\
163
+ \ of the Blueprint for an AI Bill of Rights, this framework does not detail"
164
+ - source_sentence: What are the privacy and civil rights implications of using biometric
165
+ identification technologies in New York schools?
166
+ sentences:
167
+ - "(before the technology is built and instituted). Various panelists also emphasized\
168
+ \ the importance of regulation \nthat includes limits to the type and cost of\
169
+ \ such technologies. \n56"
170
+ - "and other data-driven automated systems most directly collect data on, make inferences\
171
+ \ about, and may cause \nharm to individuals. But the overall magnitude of their\
172
+ \ impacts may be most readily visible at the level of com-\nmunities. Accordingly,\
173
+ \ the concept of community is integral to the scope of the Blueprint for an AI\
174
+ \ Bill of Rights. \nUnited States law and policy have long employed approaches\
175
+ \ for protecting the rights of individuals, but exist-\ning frameworks have sometimes\
176
+ \ struggled to provide protections when effects manifest most clearly at a com-\n\
177
+ munity level. For these reasons, the Blueprint for an AI Bill of Rights asserts\
178
+ \ that the harms of automated"
179
+ - "the privacy, civil rights, and civil liberties implications of the use of such\
180
+ \ technologies be issued before \nbiometric identification technologies can be\
181
+ \ used in New York schools. \nFederal law requires employers, and any consultants\
182
+ \ they may retain, to report the costs \nof surveilling employees in the context\
183
+ \ of a labor dispute, providing a transparency \nmechanism to help protect worker\
184
+ \ organizing. Employers engaging in workplace surveillance \"where \nan object\
185
+ \ there-of, directly or indirectly, is […] to obtain information concerning the\
186
+ \ activities of employees or a \nlabor organization in connection with a labor\
187
+ \ dispute\" must report expenditures relating to this surveillance to"
188
+ model-index:
189
+ - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
190
+ results:
191
+ - task:
192
+ type: information-retrieval
193
+ name: Information Retrieval
194
+ dataset:
195
+ name: Unknown
196
+ type: unknown
197
+ metrics:
198
+ - type: cosine_accuracy@1
199
+ value: 0.82
200
+ name: Cosine Accuracy@1
201
+ - type: cosine_accuracy@3
202
+ value: 0.9
203
+ name: Cosine Accuracy@3
204
+ - type: cosine_accuracy@5
205
+ value: 0.92
206
+ name: Cosine Accuracy@5
207
+ - type: cosine_accuracy@10
208
+ value: 0.97
209
+ name: Cosine Accuracy@10
210
+ - type: cosine_precision@1
211
+ value: 0.82
212
+ name: Cosine Precision@1
213
+ - type: cosine_precision@3
214
+ value: 0.3
215
+ name: Cosine Precision@3
216
+ - type: cosine_precision@5
217
+ value: 0.18399999999999994
218
+ name: Cosine Precision@5
219
+ - type: cosine_precision@10
220
+ value: 0.09699999999999998
221
+ name: Cosine Precision@10
222
+ - type: cosine_recall@1
223
+ value: 0.82
224
+ name: Cosine Recall@1
225
+ - type: cosine_recall@3
226
+ value: 0.9
227
+ name: Cosine Recall@3
228
+ - type: cosine_recall@5
229
+ value: 0.92
230
+ name: Cosine Recall@5
231
+ - type: cosine_recall@10
232
+ value: 0.97
233
+ name: Cosine Recall@10
234
+ - type: cosine_ndcg@10
235
+ value: 0.8900901972041357
236
+ name: Cosine Ndcg@10
237
+ - type: cosine_mrr@10
238
+ value: 0.8653174603174604
239
+ name: Cosine Mrr@10
240
+ - type: cosine_map@100
241
+ value: 0.866803936952293
242
+ name: Cosine Map@100
243
+ - type: dot_accuracy@1
244
+ value: 0.82
245
+ name: Dot Accuracy@1
246
+ - type: dot_accuracy@3
247
+ value: 0.9
248
+ name: Dot Accuracy@3
249
+ - type: dot_accuracy@5
250
+ value: 0.92
251
+ name: Dot Accuracy@5
252
+ - type: dot_accuracy@10
253
+ value: 0.97
254
+ name: Dot Accuracy@10
255
+ - type: dot_precision@1
256
+ value: 0.82
257
+ name: Dot Precision@1
258
+ - type: dot_precision@3
259
+ value: 0.3
260
+ name: Dot Precision@3
261
+ - type: dot_precision@5
262
+ value: 0.18399999999999994
263
+ name: Dot Precision@5
264
+ - type: dot_precision@10
265
+ value: 0.09699999999999998
266
+ name: Dot Precision@10
267
+ - type: dot_recall@1
268
+ value: 0.82
269
+ name: Dot Recall@1
270
+ - type: dot_recall@3
271
+ value: 0.9
272
+ name: Dot Recall@3
273
+ - type: dot_recall@5
274
+ value: 0.92
275
+ name: Dot Recall@5
276
+ - type: dot_recall@10
277
+ value: 0.97
278
+ name: Dot Recall@10
279
+ - type: dot_ndcg@10
280
+ value: 0.8900901972041357
281
+ name: Dot Ndcg@10
282
+ - type: dot_mrr@10
283
+ value: 0.8653174603174604
284
+ name: Dot Mrr@10
285
+ - type: dot_map@100
286
+ value: 0.866803936952293
287
+ name: Dot Map@100
288
+ ---
289
+
290
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
291
+
292
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
293
+
294
+ ## Model Details
295
+
296
+ ### Model Description
297
+ - **Model Type:** Sentence Transformer
298
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision 8b3219a92973c328a8e22fadcfa821b5dc75636a -->
299
+ - **Maximum Sequence Length:** 256 tokens
300
+ - **Output Dimensionality:** 384 tokens
301
+ - **Similarity Function:** Cosine Similarity
302
+ <!-- - **Training Dataset:** Unknown -->
303
+ <!-- - **Language:** Unknown -->
304
+ <!-- - **License:** Unknown -->
305
+
306
+ ### Model Sources
307
+
308
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
309
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
310
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
311
+
312
+ ### Full Model Architecture
313
+
314
+ ```
315
+ SentenceTransformer(
316
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
317
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
318
+ (2): Normalize()
319
+ )
320
+ ```
321
+
322
+ ## Usage
323
+
324
+ ### Direct Usage (Sentence Transformers)
325
+
326
+ First install the Sentence Transformers library:
327
+
328
+ ```bash
329
+ pip install -U sentence-transformers
330
+ ```
331
+
332
+ Then you can load this model and run inference.
333
+ ```python
334
+ from sentence_transformers import SentenceTransformer
335
+
336
+ # Download from the 🤗 Hub
337
+ model = SentenceTransformer("pattonma/AIE4_midterm_tuned_embeddings_2")
338
+ # Run inference
339
+ sentences = [
340
+ 'What are the privacy and civil rights implications of using biometric identification technologies in New York schools?',
341
+ 'the privacy, civil rights, and civil liberties implications of the use of such technologies be issued before \nbiometric identification technologies can be used in New York schools. \nFederal law requires employers, and any consultants they may retain, to report the costs \nof surveilling employees in the context of a labor dispute, providing a transparency \nmechanism to help protect worker organizing. Employers engaging in workplace surveillance "where \nan object there-of, directly or indirectly, is […] to obtain information concerning the activities of employees or a \nlabor organization in connection with a labor dispute" must report expenditures relating to this surveillance to',
342
+ 'and other data-driven automated systems most directly collect data on, make inferences about, and may cause \nharm to individuals. But the overall magnitude of their impacts may be most readily visible at the level of com-\nmunities. Accordingly, the concept of community is integral to the scope of the Blueprint for an AI Bill of Rights. \nUnited States law and policy have long employed approaches for protecting the rights of individuals, but exist-\ning frameworks have sometimes struggled to provide protections when effects manifest most clearly at a com-\nmunity level. For these reasons, the Blueprint for an AI Bill of Rights asserts that the harms of automated',
343
+ ]
344
+ embeddings = model.encode(sentences)
345
+ print(embeddings.shape)
346
+ # [3, 384]
347
+
348
+ # Get the similarity scores for the embeddings
349
+ similarities = model.similarity(embeddings, embeddings)
350
+ print(similarities.shape)
351
+ # [3, 3]
352
+ ```
353
+
354
+ <!--
355
+ ### Direct Usage (Transformers)
356
+
357
+ <details><summary>Click to see the direct usage in Transformers</summary>
358
+
359
+ </details>
360
+ -->
361
+
362
+ <!--
363
+ ### Downstream Usage (Sentence Transformers)
364
+
365
+ You can finetune this model on your own dataset.
366
+
367
+ <details><summary>Click to expand</summary>
368
+
369
+ </details>
370
+ -->
371
+
372
+ <!--
373
+ ### Out-of-Scope Use
374
+
375
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
376
+ -->
377
+
378
+ ## Evaluation
379
+
380
+ ### Metrics
381
+
382
+ #### Information Retrieval
383
+
384
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
385
+
386
+ | Metric | Value |
387
+ |:--------------------|:-----------|
388
+ | cosine_accuracy@1 | 0.82 |
389
+ | cosine_accuracy@3 | 0.9 |
390
+ | cosine_accuracy@5 | 0.92 |
391
+ | cosine_accuracy@10 | 0.97 |
392
+ | cosine_precision@1 | 0.82 |
393
+ | cosine_precision@3 | 0.3 |
394
+ | cosine_precision@5 | 0.184 |
395
+ | cosine_precision@10 | 0.097 |
396
+ | cosine_recall@1 | 0.82 |
397
+ | cosine_recall@3 | 0.9 |
398
+ | cosine_recall@5 | 0.92 |
399
+ | cosine_recall@10 | 0.97 |
400
+ | cosine_ndcg@10 | 0.8901 |
401
+ | cosine_mrr@10 | 0.8653 |
402
+ | **cosine_map@100** | **0.8668** |
403
+ | dot_accuracy@1 | 0.82 |
404
+ | dot_accuracy@3 | 0.9 |
405
+ | dot_accuracy@5 | 0.92 |
406
+ | dot_accuracy@10 | 0.97 |
407
+ | dot_precision@1 | 0.82 |
408
+ | dot_precision@3 | 0.3 |
409
+ | dot_precision@5 | 0.184 |
410
+ | dot_precision@10 | 0.097 |
411
+ | dot_recall@1 | 0.82 |
412
+ | dot_recall@3 | 0.9 |
413
+ | dot_recall@5 | 0.92 |
414
+ | dot_recall@10 | 0.97 |
415
+ | dot_ndcg@10 | 0.8901 |
416
+ | dot_mrr@10 | 0.8653 |
417
+ | dot_map@100 | 0.8668 |
418
+
419
+ <!--
420
+ ## Bias, Risks and Limitations
421
+
422
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
423
+ -->
424
+
425
+ <!--
426
+ ### Recommendations
427
+
428
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
429
+ -->
430
+
431
+ ## Training Details
432
+
433
+ ### Training Dataset
434
+
435
+ #### Unnamed Dataset
436
+
437
+
438
+ * Size: 600 training samples
439
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
440
+ * Approximate statistics based on the first 600 samples:
441
+ | | sentence_0 | sentence_1 |
442
+ |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
443
+ | type | string | string |
444
+ | details | <ul><li>min: 12 tokens</li><li>mean: 19.98 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 115.57 tokens</li><li>max: 223 tokens</li></ul> |
445
+ * Samples:
446
+ | sentence_0 | sentence_1 |
447
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
448
+ | <code>What is the main purpose of the AI Bill of Rights outlined in the blueprint?</code> | <code>BLUEPRINT FOR AN <br>AI BILL OF <br>RIGHTS <br>MAKING AUTOMATED <br>SYSTEMS WORK FOR <br>THE AMERICAN PEOPLE <br>OCTOBER 2022</code> |
449
+ | <code>When was the blueprint for the AI Bill of Rights published?</code> | <code>BLUEPRINT FOR AN <br>AI BILL OF <br>RIGHTS <br>MAKING AUTOMATED <br>SYSTEMS WORK FOR <br>THE AMERICAN PEOPLE <br>OCTOBER 2022</code> |
450
+ | <code>What was the purpose of the Blueprint for an AI Bill of Rights published by the White House Office of Science and Technology Policy?</code> | <code>About this Document <br>The Blueprint for an AI Bill of Rights: Making Automated Systems Work for the American People was <br>published by the White House Office of Science and Technology Policy in October 2022. This framework was <br>released one year after OSTP announced the launch of a process to develop “a bill of rights for an AI-powered <br>world.” Its release follows a year of public engagement to inform this initiative. The framework is available <br>online at: https://www.whitehouse.gov/ostp/ai-bill-of-rights <br>About the Office of Science and Technology Policy <br>The Office of Science and Technology Policy (OSTP) was established by the National Science and Technology</code> |
451
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
452
+ ```json
453
+ {
454
+ "loss": "MultipleNegativesRankingLoss",
455
+ "matryoshka_dims": [
456
+ 384,
457
+ 256,
458
+ 128,
459
+ 64
460
+ ],
461
+ "matryoshka_weights": [
462
+ 1,
463
+ 1,
464
+ 1,
465
+ 0.5
466
+ ],
467
+ "n_dims_per_step": -1
468
+ }
469
+ ```
470
+
471
+ ### Training Hyperparameters
472
+ #### Non-Default Hyperparameters
473
+
474
+ - `eval_strategy`: steps
475
+ - `per_device_train_batch_size`: 12
476
+ - `per_device_eval_batch_size`: 12
477
+ - `num_train_epochs`: 10
478
+ - `multi_dataset_batch_sampler`: round_robin
479
+
480
+ #### All Hyperparameters
481
+ <details><summary>Click to expand</summary>
482
+
483
+ - `overwrite_output_dir`: False
484
+ - `do_predict`: False
485
+ - `eval_strategy`: steps
486
+ - `prediction_loss_only`: True
487
+ - `per_device_train_batch_size`: 12
488
+ - `per_device_eval_batch_size`: 12
489
+ - `per_gpu_train_batch_size`: None
490
+ - `per_gpu_eval_batch_size`: None
491
+ - `gradient_accumulation_steps`: 1
492
+ - `eval_accumulation_steps`: None
493
+ - `torch_empty_cache_steps`: None
494
+ - `learning_rate`: 5e-05
495
+ - `weight_decay`: 0.0
496
+ - `adam_beta1`: 0.9
497
+ - `adam_beta2`: 0.999
498
+ - `adam_epsilon`: 1e-08
499
+ - `max_grad_norm`: 1
500
+ - `num_train_epochs`: 10
501
+ - `max_steps`: -1
502
+ - `lr_scheduler_type`: linear
503
+ - `lr_scheduler_kwargs`: {}
504
+ - `warmup_ratio`: 0.0
505
+ - `warmup_steps`: 0
506
+ - `log_level`: passive
507
+ - `log_level_replica`: warning
508
+ - `log_on_each_node`: True
509
+ - `logging_nan_inf_filter`: True
510
+ - `save_safetensors`: True
511
+ - `save_on_each_node`: False
512
+ - `save_only_model`: False
513
+ - `restore_callback_states_from_checkpoint`: False
514
+ - `no_cuda`: False
515
+ - `use_cpu`: False
516
+ - `use_mps_device`: False
517
+ - `seed`: 42
518
+ - `data_seed`: None
519
+ - `jit_mode_eval`: False
520
+ - `use_ipex`: False
521
+ - `bf16`: False
522
+ - `fp16`: False
523
+ - `fp16_opt_level`: O1
524
+ - `half_precision_backend`: auto
525
+ - `bf16_full_eval`: False
526
+ - `fp16_full_eval`: False
527
+ - `tf32`: None
528
+ - `local_rank`: 0
529
+ - `ddp_backend`: None
530
+ - `tpu_num_cores`: None
531
+ - `tpu_metrics_debug`: False
532
+ - `debug`: []
533
+ - `dataloader_drop_last`: False
534
+ - `dataloader_num_workers`: 0
535
+ - `dataloader_prefetch_factor`: None
536
+ - `past_index`: -1
537
+ - `disable_tqdm`: False
538
+ - `remove_unused_columns`: True
539
+ - `label_names`: None
540
+ - `load_best_model_at_end`: False
541
+ - `ignore_data_skip`: False
542
+ - `fsdp`: []
543
+ - `fsdp_min_num_params`: 0
544
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
545
+ - `fsdp_transformer_layer_cls_to_wrap`: None
546
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
547
+ - `deepspeed`: None
548
+ - `label_smoothing_factor`: 0.0
549
+ - `optim`: adamw_torch
550
+ - `optim_args`: None
551
+ - `adafactor`: False
552
+ - `group_by_length`: False
553
+ - `length_column_name`: length
554
+ - `ddp_find_unused_parameters`: None
555
+ - `ddp_bucket_cap_mb`: None
556
+ - `ddp_broadcast_buffers`: False
557
+ - `dataloader_pin_memory`: True
558
+ - `dataloader_persistent_workers`: False
559
+ - `skip_memory_metrics`: True
560
+ - `use_legacy_prediction_loop`: False
561
+ - `push_to_hub`: False
562
+ - `resume_from_checkpoint`: None
563
+ - `hub_model_id`: None
564
+ - `hub_strategy`: every_save
565
+ - `hub_private_repo`: False
566
+ - `hub_always_push`: False
567
+ - `gradient_checkpointing`: False
568
+ - `gradient_checkpointing_kwargs`: None
569
+ - `include_inputs_for_metrics`: False
570
+ - `eval_do_concat_batches`: True
571
+ - `fp16_backend`: auto
572
+ - `push_to_hub_model_id`: None
573
+ - `push_to_hub_organization`: None
574
+ - `mp_parameters`:
575
+ - `auto_find_batch_size`: False
576
+ - `full_determinism`: False
577
+ - `torchdynamo`: None
578
+ - `ray_scope`: last
579
+ - `ddp_timeout`: 1800
580
+ - `torch_compile`: False
581
+ - `torch_compile_backend`: None
582
+ - `torch_compile_mode`: None
583
+ - `dispatch_batches`: None
584
+ - `split_batches`: None
585
+ - `include_tokens_per_second`: False
586
+ - `include_num_input_tokens_seen`: False
587
+ - `neftune_noise_alpha`: None
588
+ - `optim_target_modules`: None
589
+ - `batch_eval_metrics`: False
590
+ - `eval_on_start`: False
591
+ - `eval_use_gather_object`: False
592
+ - `batch_sampler`: batch_sampler
593
+ - `multi_dataset_batch_sampler`: round_robin
594
+
595
+ </details>
596
+
597
+ ### Training Logs
598
+ | Epoch | Step | Training Loss | cosine_map@100 |
599
+ |:-----:|:----:|:-------------:|:--------------:|
600
+ | 1.0 | 50 | - | 0.8686 |
601
+ | 2.0 | 100 | - | 0.8691 |
602
+ | 3.0 | 150 | - | 0.8669 |
603
+ | 4.0 | 200 | - | 0.8536 |
604
+ | 5.0 | 250 | - | 0.8641 |
605
+ | 6.0 | 300 | - | 0.8647 |
606
+ | 7.0 | 350 | - | 0.8574 |
607
+ | 8.0 | 400 | - | 0.8619 |
608
+ | 9.0 | 450 | - | 0.8668 |
609
+ | 10.0 | 500 | 0.2413 | 0.8668 |
610
+
611
+
612
+ ### Framework Versions
613
+ - Python: 3.10.12
614
+ - Sentence Transformers: 3.1.1
615
+ - Transformers: 4.44.2
616
+ - PyTorch: 2.4.1+cu121
617
+ - Accelerate: 0.34.2
618
+ - Datasets: 3.0.0
619
+ - Tokenizers: 0.19.1
620
+
621
+ ## Citation
622
+
623
+ ### BibTeX
624
+
625
+ #### Sentence Transformers
626
+ ```bibtex
627
+ @inproceedings{reimers-2019-sentence-bert,
628
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
629
+ author = "Reimers, Nils and Gurevych, Iryna",
630
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
631
+ month = "11",
632
+ year = "2019",
633
+ publisher = "Association for Computational Linguistics",
634
+ url = "https://arxiv.org/abs/1908.10084",
635
+ }
636
+ ```
637
+
638
+ #### MatryoshkaLoss
639
+ ```bibtex
640
+ @misc{kusupati2024matryoshka,
641
+ title={Matryoshka Representation Learning},
642
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
643
+ year={2024},
644
+ eprint={2205.13147},
645
+ archivePrefix={arXiv},
646
+ primaryClass={cs.LG}
647
+ }
648
+ ```
649
+
650
+ #### MultipleNegativesRankingLoss
651
+ ```bibtex
652
+ @misc{henderson2017efficient,
653
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
654
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
655
+ year={2017},
656
+ eprint={1705.00652},
657
+ archivePrefix={arXiv},
658
+ primaryClass={cs.CL}
659
+ }
660
+ ```
661
+
662
+ <!--
663
+ ## Glossary
664
+
665
+ *Clearly define terms in order to be accessible across audiences.*
666
+ -->
667
+
668
+ <!--
669
+ ## Model Card Authors
670
+
671
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
672
+ -->
673
+
674
+ <!--
675
+ ## Model Card Contact
676
+
677
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
678
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./AIE4_midterm_tuned_embeddings",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:53db7cfb6e7aad039a489b6e1a8bb5aade339b8f5e4dd99e715365fb340bc250
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 256,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff