pavanmantha commited on
Commit
4ad8185
1 Parent(s): f59da82

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,733 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ library_name: sentence-transformers
6
+ tags:
7
+ - sentence-transformers
8
+ - sentence-similarity
9
+ - feature-extraction
10
+ - generated_from_trainer
11
+ - dataset_size:6300
12
+ - loss:MatryoshkaLoss
13
+ - loss:MultipleNegativesRankingLoss
14
+ base_model: BAAI/bge-base-en-v1.5
15
+ datasets: []
16
+ metrics:
17
+ - cosine_accuracy@1
18
+ - cosine_accuracy@3
19
+ - cosine_accuracy@5
20
+ - cosine_accuracy@10
21
+ - cosine_precision@1
22
+ - cosine_precision@3
23
+ - cosine_precision@5
24
+ - cosine_precision@10
25
+ - cosine_recall@1
26
+ - cosine_recall@3
27
+ - cosine_recall@5
28
+ - cosine_recall@10
29
+ - cosine_ndcg@10
30
+ - cosine_mrr@10
31
+ - cosine_map@100
32
+ widget:
33
+ - source_sentence: On December 15, 2022, the European Union Member States formally
34
+ adopted the EU’s Pillar Two Directive, which generally provides for a minimum
35
+ effective tax rate of 15%.
36
+ sentences:
37
+ - What were the key business segments of The Goldman Sachs Group, Inc. as reported
38
+ in their 2023 financial disclosures?
39
+ - What are the aspects of the EU Pillar Two Directive adopted in December 2022?
40
+ - How does customer size and geography affect the determination of SSP for products
41
+ and services?
42
+ - source_sentence: Schwab's management of credit risk involves policies and procedures
43
+ that include setting and reviewing credit limits, monitoring of credit limits
44
+ and quality of counterparties, and adjusting margin, PAL, option, and futures
45
+ requirements for certain securities and instruments.
46
+ sentences:
47
+ - What measures does Schwab take to manage credit risk?
48
+ - How might a 10% change in the obsolescence reserve percentage impact net earnings?
49
+ - How did the discount rates for Depop and Elo7 change during their 2022 impairments
50
+ analysis?
51
+ - source_sentence: While we believe that our ESG goals align with our long-term growth
52
+ strategy and financial and operational priorities, they are aspirational and may
53
+ change, and there is no guarantee or promise that they will be met.
54
+ sentences:
55
+ - What is the relationship between the ESG goals and the long-term growth strategy?
56
+ - What was the total revenue in millions for 2023 according to the disaggregated
57
+ revenue information by segment?
58
+ - How much did the net cumulative medical payments amount to in 2023?
59
+ - source_sentence: The total unrealized losses on U.S. Treasury securities amounted
60
+ to $134 million.
61
+ sentences:
62
+ - What critical audit matters were identified related to the revenue recognition
63
+ in the Connectivity & Platforms businesses at Comcast in 2023?
64
+ - What were the total unrealized losses on U.S. Treasury securities as of the last
65
+ reporting date?
66
+ - How is Revenue per Available Room (RevPAR) calculated and what does it indicate?
67
+ - source_sentence: The Chief Executive etc. does not manage segment results or allocate
68
+ resources to segments when considering these costs and they are therefore excluded
69
+ from our definition of segment income.
70
+ sentences:
71
+ - How are tax returns affecting the company's tax provisions when audited?
72
+ - What was the increase in sales and marketing expenses for the year ended December
73
+ 31, 2023 compared to 2022?
74
+ - What components are excluded from segment income definition according to company
75
+ management?
76
+ pipeline_tag: sentence-similarity
77
+ model-index:
78
+ - name: BGE base Financial Matryoshka
79
+ results:
80
+ - task:
81
+ type: information-retrieval
82
+ name: Information Retrieval
83
+ dataset:
84
+ name: dim 768
85
+ type: dim_768
86
+ metrics:
87
+ - type: cosine_accuracy@1
88
+ value: 0.7142857142857143
89
+ name: Cosine Accuracy@1
90
+ - type: cosine_accuracy@3
91
+ value: 0.83
92
+ name: Cosine Accuracy@3
93
+ - type: cosine_accuracy@5
94
+ value: 0.8585714285714285
95
+ name: Cosine Accuracy@5
96
+ - type: cosine_accuracy@10
97
+ value: 0.9042857142857142
98
+ name: Cosine Accuracy@10
99
+ - type: cosine_precision@1
100
+ value: 0.7142857142857143
101
+ name: Cosine Precision@1
102
+ - type: cosine_precision@3
103
+ value: 0.27666666666666667
104
+ name: Cosine Precision@3
105
+ - type: cosine_precision@5
106
+ value: 0.1717142857142857
107
+ name: Cosine Precision@5
108
+ - type: cosine_precision@10
109
+ value: 0.09042857142857141
110
+ name: Cosine Precision@10
111
+ - type: cosine_recall@1
112
+ value: 0.7142857142857143
113
+ name: Cosine Recall@1
114
+ - type: cosine_recall@3
115
+ value: 0.83
116
+ name: Cosine Recall@3
117
+ - type: cosine_recall@5
118
+ value: 0.8585714285714285
119
+ name: Cosine Recall@5
120
+ - type: cosine_recall@10
121
+ value: 0.9042857142857142
122
+ name: Cosine Recall@10
123
+ - type: cosine_ndcg@10
124
+ value: 0.8098414318705203
125
+ name: Cosine Ndcg@10
126
+ - type: cosine_mrr@10
127
+ value: 0.7796729024943311
128
+ name: Cosine Mrr@10
129
+ - type: cosine_map@100
130
+ value: 0.7831593716959953
131
+ name: Cosine Map@100
132
+ - task:
133
+ type: information-retrieval
134
+ name: Information Retrieval
135
+ dataset:
136
+ name: dim 512
137
+ type: dim_512
138
+ metrics:
139
+ - type: cosine_accuracy@1
140
+ value: 0.7157142857142857
141
+ name: Cosine Accuracy@1
142
+ - type: cosine_accuracy@3
143
+ value: 0.8242857142857143
144
+ name: Cosine Accuracy@3
145
+ - type: cosine_accuracy@5
146
+ value: 0.8542857142857143
147
+ name: Cosine Accuracy@5
148
+ - type: cosine_accuracy@10
149
+ value: 0.8942857142857142
150
+ name: Cosine Accuracy@10
151
+ - type: cosine_precision@1
152
+ value: 0.7157142857142857
153
+ name: Cosine Precision@1
154
+ - type: cosine_precision@3
155
+ value: 0.27476190476190476
156
+ name: Cosine Precision@3
157
+ - type: cosine_precision@5
158
+ value: 0.17085714285714285
159
+ name: Cosine Precision@5
160
+ - type: cosine_precision@10
161
+ value: 0.08942857142857143
162
+ name: Cosine Precision@10
163
+ - type: cosine_recall@1
164
+ value: 0.7157142857142857
165
+ name: Cosine Recall@1
166
+ - type: cosine_recall@3
167
+ value: 0.8242857142857143
168
+ name: Cosine Recall@3
169
+ - type: cosine_recall@5
170
+ value: 0.8542857142857143
171
+ name: Cosine Recall@5
172
+ - type: cosine_recall@10
173
+ value: 0.8942857142857142
174
+ name: Cosine Recall@10
175
+ - type: cosine_ndcg@10
176
+ value: 0.805674034217217
177
+ name: Cosine Ndcg@10
178
+ - type: cosine_mrr@10
179
+ value: 0.7771672335600905
180
+ name: Cosine Mrr@10
181
+ - type: cosine_map@100
182
+ value: 0.7814319590791096
183
+ name: Cosine Map@100
184
+ - task:
185
+ type: information-retrieval
186
+ name: Information Retrieval
187
+ dataset:
188
+ name: dim 256
189
+ type: dim_256
190
+ metrics:
191
+ - type: cosine_accuracy@1
192
+ value: 0.7057142857142857
193
+ name: Cosine Accuracy@1
194
+ - type: cosine_accuracy@3
195
+ value: 0.8185714285714286
196
+ name: Cosine Accuracy@3
197
+ - type: cosine_accuracy@5
198
+ value: 0.8528571428571429
199
+ name: Cosine Accuracy@5
200
+ - type: cosine_accuracy@10
201
+ value: 0.8928571428571429
202
+ name: Cosine Accuracy@10
203
+ - type: cosine_precision@1
204
+ value: 0.7057142857142857
205
+ name: Cosine Precision@1
206
+ - type: cosine_precision@3
207
+ value: 0.27285714285714285
208
+ name: Cosine Precision@3
209
+ - type: cosine_precision@5
210
+ value: 0.17057142857142857
211
+ name: Cosine Precision@5
212
+ - type: cosine_precision@10
213
+ value: 0.08928571428571427
214
+ name: Cosine Precision@10
215
+ - type: cosine_recall@1
216
+ value: 0.7057142857142857
217
+ name: Cosine Recall@1
218
+ - type: cosine_recall@3
219
+ value: 0.8185714285714286
220
+ name: Cosine Recall@3
221
+ - type: cosine_recall@5
222
+ value: 0.8528571428571429
223
+ name: Cosine Recall@5
224
+ - type: cosine_recall@10
225
+ value: 0.8928571428571429
226
+ name: Cosine Recall@10
227
+ - type: cosine_ndcg@10
228
+ value: 0.7998364446362882
229
+ name: Cosine Ndcg@10
230
+ - type: cosine_mrr@10
231
+ value: 0.7700413832199544
232
+ name: Cosine Mrr@10
233
+ - type: cosine_map@100
234
+ value: 0.7739467761950781
235
+ name: Cosine Map@100
236
+ - task:
237
+ type: information-retrieval
238
+ name: Information Retrieval
239
+ dataset:
240
+ name: dim 128
241
+ type: dim_128
242
+ metrics:
243
+ - type: cosine_accuracy@1
244
+ value: 0.6871428571428572
245
+ name: Cosine Accuracy@1
246
+ - type: cosine_accuracy@3
247
+ value: 0.8057142857142857
248
+ name: Cosine Accuracy@3
249
+ - type: cosine_accuracy@5
250
+ value: 0.8385714285714285
251
+ name: Cosine Accuracy@5
252
+ - type: cosine_accuracy@10
253
+ value: 0.8871428571428571
254
+ name: Cosine Accuracy@10
255
+ - type: cosine_precision@1
256
+ value: 0.6871428571428572
257
+ name: Cosine Precision@1
258
+ - type: cosine_precision@3
259
+ value: 0.26857142857142857
260
+ name: Cosine Precision@3
261
+ - type: cosine_precision@5
262
+ value: 0.1677142857142857
263
+ name: Cosine Precision@5
264
+ - type: cosine_precision@10
265
+ value: 0.0887142857142857
266
+ name: Cosine Precision@10
267
+ - type: cosine_recall@1
268
+ value: 0.6871428571428572
269
+ name: Cosine Recall@1
270
+ - type: cosine_recall@3
271
+ value: 0.8057142857142857
272
+ name: Cosine Recall@3
273
+ - type: cosine_recall@5
274
+ value: 0.8385714285714285
275
+ name: Cosine Recall@5
276
+ - type: cosine_recall@10
277
+ value: 0.8871428571428571
278
+ name: Cosine Recall@10
279
+ - type: cosine_ndcg@10
280
+ value: 0.7864888199817319
281
+ name: Cosine Ndcg@10
282
+ - type: cosine_mrr@10
283
+ value: 0.7544109977324263
284
+ name: Cosine Mrr@10
285
+ - type: cosine_map@100
286
+ value: 0.7584408188949701
287
+ name: Cosine Map@100
288
+ ---
289
+
290
+ # BGE base Financial Matryoshka
291
+
292
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
293
+
294
+ ## Model Details
295
+
296
+ ### Model Description
297
+ - **Model Type:** Sentence Transformer
298
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
299
+ - **Maximum Sequence Length:** 512 tokens
300
+ - **Output Dimensionality:** 768 tokens
301
+ - **Similarity Function:** Cosine Similarity
302
+ <!-- - **Training Dataset:** Unknown -->
303
+ - **Language:** en
304
+ - **License:** apache-2.0
305
+
306
+ ### Model Sources
307
+
308
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
309
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
310
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
311
+
312
+ ### Full Model Architecture
313
+
314
+ ```
315
+ SentenceTransformer(
316
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
317
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
318
+ (2): Normalize()
319
+ )
320
+ ```
321
+
322
+ ## Usage
323
+
324
+ ### Direct Usage (Sentence Transformers)
325
+
326
+ First install the Sentence Transformers library:
327
+
328
+ ```bash
329
+ pip install -U sentence-transformers
330
+ ```
331
+
332
+ Then you can load this model and run inference.
333
+ ```python
334
+ from sentence_transformers import SentenceTransformer
335
+
336
+ # Download from the 🤗 Hub
337
+ model = SentenceTransformer("pavanmantha/bge-base-en-sec10k-embed")
338
+ # Run inference
339
+ sentences = [
340
+ 'The Chief Executive etc. does not manage segment results or allocate resources to segments when considering these costs and they are therefore excluded from our definition of segment income.',
341
+ 'What components are excluded from segment income definition according to company management?',
342
+ 'What was the increase in sales and marketing expenses for the year ended December 31, 2023 compared to 2022?',
343
+ ]
344
+ embeddings = model.encode(sentences)
345
+ print(embeddings.shape)
346
+ # [3, 768]
347
+
348
+ # Get the similarity scores for the embeddings
349
+ similarities = model.similarity(embeddings, embeddings)
350
+ print(similarities.shape)
351
+ # [3, 3]
352
+ ```
353
+
354
+ <!--
355
+ ### Direct Usage (Transformers)
356
+
357
+ <details><summary>Click to see the direct usage in Transformers</summary>
358
+
359
+ </details>
360
+ -->
361
+
362
+ <!--
363
+ ### Downstream Usage (Sentence Transformers)
364
+
365
+ You can finetune this model on your own dataset.
366
+
367
+ <details><summary>Click to expand</summary>
368
+
369
+ </details>
370
+ -->
371
+
372
+ <!--
373
+ ### Out-of-Scope Use
374
+
375
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
376
+ -->
377
+
378
+ ## Evaluation
379
+
380
+ ### Metrics
381
+
382
+ #### Information Retrieval
383
+ * Dataset: `dim_768`
384
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
385
+
386
+ | Metric | Value |
387
+ |:--------------------|:-----------|
388
+ | cosine_accuracy@1 | 0.7143 |
389
+ | cosine_accuracy@3 | 0.83 |
390
+ | cosine_accuracy@5 | 0.8586 |
391
+ | cosine_accuracy@10 | 0.9043 |
392
+ | cosine_precision@1 | 0.7143 |
393
+ | cosine_precision@3 | 0.2767 |
394
+ | cosine_precision@5 | 0.1717 |
395
+ | cosine_precision@10 | 0.0904 |
396
+ | cosine_recall@1 | 0.7143 |
397
+ | cosine_recall@3 | 0.83 |
398
+ | cosine_recall@5 | 0.8586 |
399
+ | cosine_recall@10 | 0.9043 |
400
+ | cosine_ndcg@10 | 0.8098 |
401
+ | cosine_mrr@10 | 0.7797 |
402
+ | **cosine_map@100** | **0.7832** |
403
+
404
+ #### Information Retrieval
405
+ * Dataset: `dim_512`
406
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
407
+
408
+ | Metric | Value |
409
+ |:--------------------|:-----------|
410
+ | cosine_accuracy@1 | 0.7157 |
411
+ | cosine_accuracy@3 | 0.8243 |
412
+ | cosine_accuracy@5 | 0.8543 |
413
+ | cosine_accuracy@10 | 0.8943 |
414
+ | cosine_precision@1 | 0.7157 |
415
+ | cosine_precision@3 | 0.2748 |
416
+ | cosine_precision@5 | 0.1709 |
417
+ | cosine_precision@10 | 0.0894 |
418
+ | cosine_recall@1 | 0.7157 |
419
+ | cosine_recall@3 | 0.8243 |
420
+ | cosine_recall@5 | 0.8543 |
421
+ | cosine_recall@10 | 0.8943 |
422
+ | cosine_ndcg@10 | 0.8057 |
423
+ | cosine_mrr@10 | 0.7772 |
424
+ | **cosine_map@100** | **0.7814** |
425
+
426
+ #### Information Retrieval
427
+ * Dataset: `dim_256`
428
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
429
+
430
+ | Metric | Value |
431
+ |:--------------------|:-----------|
432
+ | cosine_accuracy@1 | 0.7057 |
433
+ | cosine_accuracy@3 | 0.8186 |
434
+ | cosine_accuracy@5 | 0.8529 |
435
+ | cosine_accuracy@10 | 0.8929 |
436
+ | cosine_precision@1 | 0.7057 |
437
+ | cosine_precision@3 | 0.2729 |
438
+ | cosine_precision@5 | 0.1706 |
439
+ | cosine_precision@10 | 0.0893 |
440
+ | cosine_recall@1 | 0.7057 |
441
+ | cosine_recall@3 | 0.8186 |
442
+ | cosine_recall@5 | 0.8529 |
443
+ | cosine_recall@10 | 0.8929 |
444
+ | cosine_ndcg@10 | 0.7998 |
445
+ | cosine_mrr@10 | 0.77 |
446
+ | **cosine_map@100** | **0.7739** |
447
+
448
+ #### Information Retrieval
449
+ * Dataset: `dim_128`
450
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
451
+
452
+ | Metric | Value |
453
+ |:--------------------|:-----------|
454
+ | cosine_accuracy@1 | 0.6871 |
455
+ | cosine_accuracy@3 | 0.8057 |
456
+ | cosine_accuracy@5 | 0.8386 |
457
+ | cosine_accuracy@10 | 0.8871 |
458
+ | cosine_precision@1 | 0.6871 |
459
+ | cosine_precision@3 | 0.2686 |
460
+ | cosine_precision@5 | 0.1677 |
461
+ | cosine_precision@10 | 0.0887 |
462
+ | cosine_recall@1 | 0.6871 |
463
+ | cosine_recall@3 | 0.8057 |
464
+ | cosine_recall@5 | 0.8386 |
465
+ | cosine_recall@10 | 0.8871 |
466
+ | cosine_ndcg@10 | 0.7865 |
467
+ | cosine_mrr@10 | 0.7544 |
468
+ | **cosine_map@100** | **0.7584** |
469
+
470
+ <!--
471
+ ## Bias, Risks and Limitations
472
+
473
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
474
+ -->
475
+
476
+ <!--
477
+ ### Recommendations
478
+
479
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
480
+ -->
481
+
482
+ ## Training Details
483
+
484
+ ### Training Dataset
485
+
486
+ #### Unnamed Dataset
487
+
488
+
489
+ * Size: 6,300 training samples
490
+ * Columns: <code>positive</code> and <code>anchor</code>
491
+ * Approximate statistics based on the first 1000 samples:
492
+ | | positive | anchor |
493
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
494
+ | type | string | string |
495
+ | details | <ul><li>min: 9 tokens</li><li>mean: 46.84 tokens</li><li>max: 326 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 20.44 tokens</li><li>max: 43 tokens</li></ul> |
496
+ * Samples:
497
+ | positive | anchor |
498
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------|
499
+ | <code>The federal banking regulators’ guidance on sound incentive compensation practices sets forth three key principles for incentive compensation arrangements that are designed to help ensure such plans do not encourage imprudent risk-taking and align with the safety and soundness of the organization. These principles include balancing risk with financial results, compatibility with internal controls and risk management, and support from strong corporate governance with effective oversight by the board.</code> | <code>What are the three principles set forth by federal banking regulators' guidance on incentive compensation practices?</code> |
500
+ | <code>Delta Air Lines generated a free cash flow of $2,003 million in 2023. This figure was adjusted for several factors including net redemptions of short-term investments and a pilot agreement payment of $735 million.</code> | <code>How much free cash flow did Delta Air Lines generate in 2023?</code> |
501
+ | <code>Inherent in the qualitative assessment are estimates and assumptions about our consideration of events and circumstances that may indicate a potential impairment, including industry and market conditions, expected cost pressures, expected financial performance, and general macroeconomic conditions.</code> | <code>What does the qualitative assessment of goodwill consider regarding possible impairment?</code> |
502
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
503
+ ```json
504
+ {
505
+ "loss": "MultipleNegativesRankingLoss",
506
+ "matryoshka_dims": [
507
+ 768,
508
+ 512,
509
+ 256,
510
+ 128
511
+ ],
512
+ "matryoshka_weights": [
513
+ 1,
514
+ 1,
515
+ 1,
516
+ 1
517
+ ],
518
+ "n_dims_per_step": -1
519
+ }
520
+ ```
521
+
522
+ ### Training Hyperparameters
523
+ #### Non-Default Hyperparameters
524
+
525
+ - `eval_strategy`: epoch
526
+ - `per_device_train_batch_size`: 32
527
+ - `per_device_eval_batch_size`: 16
528
+ - `gradient_accumulation_steps`: 16
529
+ - `learning_rate`: 2e-05
530
+ - `num_train_epochs`: 4
531
+ - `lr_scheduler_type`: cosine
532
+ - `warmup_ratio`: 0.1
533
+ - `fp16`: True
534
+ - `tf32`: False
535
+ - `load_best_model_at_end`: True
536
+ - `optim`: adamw_torch_fused
537
+ - `batch_sampler`: no_duplicates
538
+
539
+ #### All Hyperparameters
540
+ <details><summary>Click to expand</summary>
541
+
542
+ - `overwrite_output_dir`: False
543
+ - `do_predict`: False
544
+ - `eval_strategy`: epoch
545
+ - `prediction_loss_only`: True
546
+ - `per_device_train_batch_size`: 32
547
+ - `per_device_eval_batch_size`: 16
548
+ - `per_gpu_train_batch_size`: None
549
+ - `per_gpu_eval_batch_size`: None
550
+ - `gradient_accumulation_steps`: 16
551
+ - `eval_accumulation_steps`: None
552
+ - `learning_rate`: 2e-05
553
+ - `weight_decay`: 0.0
554
+ - `adam_beta1`: 0.9
555
+ - `adam_beta2`: 0.999
556
+ - `adam_epsilon`: 1e-08
557
+ - `max_grad_norm`: 1.0
558
+ - `num_train_epochs`: 4
559
+ - `max_steps`: -1
560
+ - `lr_scheduler_type`: cosine
561
+ - `lr_scheduler_kwargs`: {}
562
+ - `warmup_ratio`: 0.1
563
+ - `warmup_steps`: 0
564
+ - `log_level`: passive
565
+ - `log_level_replica`: warning
566
+ - `log_on_each_node`: True
567
+ - `logging_nan_inf_filter`: True
568
+ - `save_safetensors`: True
569
+ - `save_on_each_node`: False
570
+ - `save_only_model`: False
571
+ - `restore_callback_states_from_checkpoint`: False
572
+ - `no_cuda`: False
573
+ - `use_cpu`: False
574
+ - `use_mps_device`: False
575
+ - `seed`: 42
576
+ - `data_seed`: None
577
+ - `jit_mode_eval`: False
578
+ - `use_ipex`: False
579
+ - `bf16`: False
580
+ - `fp16`: True
581
+ - `fp16_opt_level`: O1
582
+ - `half_precision_backend`: auto
583
+ - `bf16_full_eval`: False
584
+ - `fp16_full_eval`: False
585
+ - `tf32`: False
586
+ - `local_rank`: 0
587
+ - `ddp_backend`: None
588
+ - `tpu_num_cores`: None
589
+ - `tpu_metrics_debug`: False
590
+ - `debug`: []
591
+ - `dataloader_drop_last`: False
592
+ - `dataloader_num_workers`: 0
593
+ - `dataloader_prefetch_factor`: None
594
+ - `past_index`: -1
595
+ - `disable_tqdm`: False
596
+ - `remove_unused_columns`: True
597
+ - `label_names`: None
598
+ - `load_best_model_at_end`: True
599
+ - `ignore_data_skip`: False
600
+ - `fsdp`: []
601
+ - `fsdp_min_num_params`: 0
602
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
603
+ - `fsdp_transformer_layer_cls_to_wrap`: None
604
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
605
+ - `deepspeed`: None
606
+ - `label_smoothing_factor`: 0.0
607
+ - `optim`: adamw_torch_fused
608
+ - `optim_args`: None
609
+ - `adafactor`: False
610
+ - `group_by_length`: False
611
+ - `length_column_name`: length
612
+ - `ddp_find_unused_parameters`: None
613
+ - `ddp_bucket_cap_mb`: None
614
+ - `ddp_broadcast_buffers`: False
615
+ - `dataloader_pin_memory`: True
616
+ - `dataloader_persistent_workers`: False
617
+ - `skip_memory_metrics`: True
618
+ - `use_legacy_prediction_loop`: False
619
+ - `push_to_hub`: False
620
+ - `resume_from_checkpoint`: None
621
+ - `hub_model_id`: None
622
+ - `hub_strategy`: every_save
623
+ - `hub_private_repo`: False
624
+ - `hub_always_push`: False
625
+ - `gradient_checkpointing`: False
626
+ - `gradient_checkpointing_kwargs`: None
627
+ - `include_inputs_for_metrics`: False
628
+ - `eval_do_concat_batches`: True
629
+ - `fp16_backend`: auto
630
+ - `push_to_hub_model_id`: None
631
+ - `push_to_hub_organization`: None
632
+ - `mp_parameters`:
633
+ - `auto_find_batch_size`: False
634
+ - `full_determinism`: False
635
+ - `torchdynamo`: None
636
+ - `ray_scope`: last
637
+ - `ddp_timeout`: 1800
638
+ - `torch_compile`: False
639
+ - `torch_compile_backend`: None
640
+ - `torch_compile_mode`: None
641
+ - `dispatch_batches`: None
642
+ - `split_batches`: None
643
+ - `include_tokens_per_second`: False
644
+ - `include_num_input_tokens_seen`: False
645
+ - `neftune_noise_alpha`: None
646
+ - `optim_target_modules`: None
647
+ - `batch_eval_metrics`: False
648
+ - `batch_sampler`: no_duplicates
649
+ - `multi_dataset_batch_sampler`: proportional
650
+
651
+ </details>
652
+
653
+ ### Training Logs
654
+ | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_768_cosine_map@100 |
655
+ |:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|
656
+ | 0.8122 | 10 | 1.1625 | - | - | - | - |
657
+ | 0.9746 | 12 | - | 0.7429 | 0.7568 | 0.7688 | 0.7724 |
658
+ | 1.6244 | 20 | 0.4282 | - | - | - | - |
659
+ | 1.9492 | 24 | - | 0.7541 | 0.7691 | 0.7802 | 0.7828 |
660
+ | 2.4365 | 30 | 0.3086 | - | - | - | - |
661
+ | 2.9239 | 36 | - | 0.7581 | 0.7731 | 0.7810 | 0.7838 |
662
+ | 3.2487 | 40 | 0.2432 | - | - | - | - |
663
+ | **3.8985** | **48** | **-** | **0.7584** | **0.7739** | **0.7814** | **0.7832** |
664
+
665
+ * The bold row denotes the saved checkpoint.
666
+
667
+ ### Framework Versions
668
+ - Python: 3.10.13
669
+ - Sentence Transformers: 3.0.1
670
+ - Transformers: 4.41.2
671
+ - PyTorch: 2.1.2
672
+ - Accelerate: 0.31.0
673
+ - Datasets: 2.19.1
674
+ - Tokenizers: 0.19.1
675
+
676
+ ## Citation
677
+
678
+ ### BibTeX
679
+
680
+ #### Sentence Transformers
681
+ ```bibtex
682
+ @inproceedings{reimers-2019-sentence-bert,
683
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
684
+ author = "Reimers, Nils and Gurevych, Iryna",
685
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
686
+ month = "11",
687
+ year = "2019",
688
+ publisher = "Association for Computational Linguistics",
689
+ url = "https://arxiv.org/abs/1908.10084",
690
+ }
691
+ ```
692
+
693
+ #### MatryoshkaLoss
694
+ ```bibtex
695
+ @misc{kusupati2024matryoshka,
696
+ title={Matryoshka Representation Learning},
697
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
698
+ year={2024},
699
+ eprint={2205.13147},
700
+ archivePrefix={arXiv},
701
+ primaryClass={cs.LG}
702
+ }
703
+ ```
704
+
705
+ #### MultipleNegativesRankingLoss
706
+ ```bibtex
707
+ @misc{henderson2017efficient,
708
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
709
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
710
+ year={2017},
711
+ eprint={1705.00652},
712
+ archivePrefix={arXiv},
713
+ primaryClass={cs.CL}
714
+ }
715
+ ```
716
+
717
+ <!--
718
+ ## Glossary
719
+
720
+ *Clearly define terms in order to be accessible across audiences.*
721
+ -->
722
+
723
+ <!--
724
+ ## Model Card Authors
725
+
726
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
727
+ -->
728
+
729
+ <!--
730
+ ## Model Card Contact
731
+
732
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
733
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.41.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5733ad4b25e784a4ca5456eee35bdb7031c60e18ccf8d35902044612f9b83ed2
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff